что такое передаточный механизм
Передачи вращательного движения
Механическая энергия, используемая для приведения в движение машины-орудия, представляет собой энергию вращательного движения вала двигателя. Вращательное движение получило наибольшее распространение в механизмах и машинах, так как обладает следующими достоинствами : обеспечивает непрерывное и равномерное движение при небольших потерях на трение; позволяет иметь простую и компактную конструкцию передаточного механизма.
Все современные двигатели для уменьшения габаритов и стоимости выполняют быстроходными с весьма узким диапазоном изменения угловых скоростей. Непосредственно быстроходный вал двигателя соединяют с валом машины редко (вентиляторы и т. п.). В абсолютном большинстве случаев режим работы машины-орудия не совпадает с режимом работы двигателя, поэтому передача механической энергии от двигателя к рабочему органу машины осуществляется с помощью различных передач.
Передачей будем называть устройство, предназначенное для передачи энергии из одной точки пространства в другую, расположенную на некотором расстоянии от первой.
В современном машиностроении в зависимости от вида передаваемой энергии применяют механические, пневматические, гидравлические и электрические передачи. В курсе «Детали машин» рассматривают только наиболее распространенные механические передачи.
Механическими передачами, или просто передачами, называют механизмы для передачи энергии от машины-двигателя к машине-орудию, как правило, с преобразованием скоростей, моментов, а иногда — с преобразованием видов (например, вращательное в поступательное) и законов движения.
Механические передачи известны со времен зарождения техники, прошли вместе с ней длительный путь развития и совершенствования и имеют сейчас очень широкое распространение. Грамотная эксплуатация механических передач требует знания основ и особенностей их проектирования и методов расчетов.
При проектировании к механическим передачам предъявляются следующие требования:
— высокие нагрузочные способности при ограниченных габаритных размерах, весе, стоимости;
— постоянство передаточного отношения или закона его изменения;
— обеспечение определенного взаимного расположения осей ведущего и ведомого валов, в частности, межосевого расстояния a w ;
— малые потери при передаче мощности (высокий кпд) и, как следствие, ограниченный нагрев и износ;
— плавная и бесшумная работа;
— прочность, долговечность, надёжность.
Передачи имеют широкое распространение в машиностроении по следующим причинам:
1) энергию целесообразно передавать при больших частотах вращения;
2) требуемые скорости движения рабочих органов машин, как правило, не совпадают с оптимальными скоростями двигателя; обычно ниже, а создание тихоходных двигателей вызывает увеличение габаритов и стоимости;
3) скорость исполнительного органа в процессе работы машины-орудия необходимо изменять (например, у автомобиля, грузоподъемного крана, токарного станка), а скорость машины-двигателя чаще постоянна (например, у электродвигателей);
4) нередко от одного двигателя необходимо приводить в движение несколько механизмов с различными скоростями;
5) в отдельные периоды работы исполнительному органу машины требуется передать вращающие моменты, превышающие моменты на валу машины-двигателя, а это возможно выполнить за счет уменьшения угловой скорости вала машины-орудия;
6) двигатели обычно выполняют для равномерного вращательного движения, а в машинах часто оказывается необходимым поступательное движение с определенным законом;
7) двигатели не всегда могут быть непосредственно соединены с исполнительными механизмами из-за габаритов машины, условий техники безопасности и удобства обслуживания;
8) распределять работу двигателя между несколькими исполнительными органами машины.
Как правило, угловые скорости валов большинства используемых в настоящее время в технике двигателей (поршневых двигателей внутреннего сгорания, газотурбинных, электрических, гидравлических и пневматических двигателей) значительно превышают угловые скорости валов исполнительных или рабочих органов машин, порой на 2-3 порядка. Поэтому доставка (передача) энергии двигателя с помощью передачи любого типа, в том числе и механической, происходит, как правило, совместно с одновременным преобразованием моментов и угловых скоростей (в сторону повышения первых и понижения последних).
При этом необходимо отметить, что конструктивное обеспечение функции транспортного характера – чисто передачи энергии иной раз вступает в логическое противоречие с направлением задачи конечного преобразования силовых и скоростных параметров этой энергии. Например, в трансмиссиях многих транспортных машин (особенно высокой проходимости) входной редуктор сначала повышает частоту вращения, понижение ее до требуемых пределов производят бортовые или колесные редукторы.
Этот прием позволяет снизить габаритно-весовые показатели промежуточных элементов трансмиссии (коробок перемены передач, карданных валов) – размеры валов и шестерен пропорциональны величине передаваемого крутящего момента в степени 1/3.
Аналогичный принцип используется при передаче электроэнергии – повышение напряжения перед ЛЭП позволяет значительно снизить тепловые потери, определяемые в основном силой тока в проводах, а заодно уменьшить сечение этих проводов.
Иногда передача механической энергии двигателя сопровождается также преобразованием вида движения (например, поступательного движения во вращательное или наоборот) или законов движения (например, равномерного движения в неравномерное).
Широко известными образцами таких передач являются кривошипно-шатунный механизм и кулачковый привод механизма газораспределения.
Классификация механических передач
Механические передачи, применяемые в машиностроении, классифицируют (рис.1 и 2):
по энергетической характеристике механические передачи делятся на:
— кинематические (передаваемая мощность Р
— силовые (передаваемая мощность Р ≥0,1 кВт).
по принципу передачи движения:
Фрикционные передачи подразделяют на:
— фрикционные передачи с жесткими звеньями (с различного рода катками, дисками);
— фрикционные передачи с гибким звеном (ременные, канатные).
Передачи зацеплением делятся на:
— передачи зацеплением с непосредственным контактом жестких звеньев (цилиндрические, конические, червячные);
— волновые передачи зацеплением;
— передачи зацеплением с гибким звеном (зубчато-ременные, цепные).
Как фрикционные, так и зубчатые передачи могут быть выполнены с непосредственным контактом ведущего и ведомого звеньев или посредством гибкой связи – ремня, цепи.
Что такое передаточный механизм
Исполнительные механизмы робота являются теми средствами, с помощью которых роботы передвигаются и изменяют форму своего тела.
Нажмите на картинку, чтобы посмотреть анимацию
Механической передачей называют устройство для передачи механического движения от двигателя к исполнительным органам машины. Может осуществляться с изменением значения (например, замедление или ускорение) скорости и направления движения (например, направо или налево или перпендикулярно), с преобразованием вида движения (например, из вращательного в поступательное).
Механические передачи вращательного движения от двигателя классифицируются следующим образом:
Параллельные оси валов
Пересекающиеся оси валов
Перекрещивающиеся оси валов
В каждой передаче различают два основных вала: входной и выходной, или ведущий и ведомый. Между этими валами в многоступенчатых передачах располагаются промежуточные валы.
Передаточное отношение – отношение угловой скорости (количество оборотов двигателя в секунду) ведущего звена (шестерня, подключенная к двигателю) к угловой скорости ведомого звена (шестерня, подключенная к исполнительному механизму) или отношение числа зубьев ведомого вала к числу зубьев ведущего вала :
n1 – количество зубцов (или диаметр) ведущего колеса n2 – количество зубцов (или диаметр) ведомого колеса
Если в передаче участвует несколько подряд установленных одинаковых зубчатых колес, то при расчете передаточного отношения учитывается только первое и последнее из них, а все остальные называются «паразитными».
Паразитные шестерни исполняют полезную функцию только при необходимости передачи вращения на некоторое расстояние.
Пример расчета передаточного отношения и определения типа передачи
Сколько зубьев в ведущем ( N 1) и ведомом ( N 2) колесе?
Повышающая (ускоряющая) передача
Понижающая (замедляющая) передача
Где применяются передачи такого типа
Спиннинг для ускорения вращения катушки с леской
Дрель для ускорения вращения сверла
Промежуточные колеса изменяют направление вращения, если их число – четное. При нечетном же их числе направление вращения не изменяется.
Паразитные шестерни (2 и 9) в топливном насосе
В многоступенчатой передаче передаточное отношение всей механической передачи будет равно произведению передаточных отношений всех ступеней: U=U1*U2*U3*. *Un
Передаточное отношение
Одной из важнейших кинематических характеристик в теории механизмов и машин является передаточное отношение. Оно позволяет определить, на какую величину возрастает момент приложенной силы, когда происходит передача вращения от одной детали к другой. На практике для решения различных технических задач механизмы создаются с кинематической схемой, имеющей постоянное или переменное передаточное отношение.
Общее определение
Значение передаточного отношения у кинематических схем рассчитывается по стандартному математическому выражению. Результат получается при проведении математической операции деления значения угловой скорости ведущего вала или шестерёнки, на такой же параметр ведомого вала. Вместо этих значений используют отношение их частот вращения.
Современные кинематические схемы реализованы с использованием следующих механических соединений:
Передача вращения основана на двух физических принципах: с помощью силы трения, с использованием механизмов зацепления. В зависимости от решаемой задачи механизмы изготавливаются с замедлением и ускорением. Первые называются редукторами, вторые — мультипликаторами. Обе разновидности бывают одноступенчатыми, двухступенчатыми, многоступенчатыми.
Пространственное расположение осей определяет следующие виды механизмов:
Все типы механизмов бывают замедляющие и ускоряющие движение. Наиболее частое применение замедляющих конструкций объясняется более высокой скоростью используемых двигателей и необходимостью увеличить мощность выходного элемента кинематической схемы.
В зависимости от соотношения скоростей возникает вопрос: может ли передаточное отношение быть отрицательным? Этот коэффициент является отношением величин имеющих только положительные значения. Он не может быть отрицательным. В зависимости от отношения числителя к знаменателю результат получиться больше единицы или меньше. В первом случает, он справедлив для редукторов, во втором для мультипликаторов.
Таблица передаточных отношений является сводным документом. В ней приведены значения основных технических характеристик всех типов кинематических соединений.
В сводной таблице можно найти зависимость значения передаточного числа от допустимой мощности, которая передаётся конкретным видом соединения.
Зубчатая передача
Это механическое соединение двух или более вращающихся валов при помощи специальных колёс, на поверхности которых выточены зубья. Такой тип подразделяется по следующим характеристикам:
Важную роль в понимании работы всего механизма играет передаточное отношение зубчатой передачи. Его вычисляют, используя классическое выражение. Оно находится с подстановкой различных параметров. Например, подсчитывая численность изготовленных зубьев на ведущем и ведомом колесе. Формула позволяет получать результаты с высокой степенью точности:
Где i12 — передаточное отношение от звена 1 к звену 2 (звено 1 — ведущее, звено 2 — ведомое; d1,d2 — диаметры звеньев; z1, z2 — количество зубьев звеньев (если таковые имеются); M1, M2 — крутящие моменты звеньев; ω1, ω2 — угловые скорости звеньев; n1, n2 — частоты вращения звеньев.
В большей степени он зависит от количества зубьев расположенных на шестерёнке. Существенным достоинством зубчатого соединения является постоянство расчётного и реального передаточного отношения. Она связано с отсутствием эффекта проскальзывания.
Существенное влияние на величину этого показателя оказывает применяемое количество шестерней и число зубчатых колёс.
Для цилиндрической передачи этот параметр кроме приведенных выше параметров зависит от межосевого расстояния. Цилиндрические зубчатые передачи распространены в различных агрегатах легковых и грузовых автомобилей, тракторов, сельскохозяйственной техники. Их активно используют в трансмиссии.
Зубчатая передача обладает самым большим коэффициентом передачи мощности. Она способна отдавать мощность до 4500 кВт с передаточным числом достигающим 6,3.
Распространение получили зубчатые конструкции конического типа. Они обладают ортогональным сочленением. Расчёт конической передачи предполагает учёт таких параметров как: делительные диаметры, углы конусов, количество зубьев.
Для получения поступательного движения применяется реечное соединение. Конструктивно она состоит из шестерёнки, рейки с нанесёнными зубьями. Для реечной передачи учитывают диаметр окружности и количество зубьев на колесе, число зубьев расположенных на рейке.
Планетарная передача
Широко применяется так называемая планетарная кинематическая схема. Она представляет собой механизм, предназначенный для передачи, преобразования вращательного движения. С этой целью используются зубчатые колеса, расположенные на перемещающейся оси. Конструктивными элементами являются: центральные зубчатые колеса, закреплённые на неподвижных осях, боковые зубчатые колеса (расположены на перемещающихся осях). Для обеспечения наилучшего эффекта планетарные механизмы изготовляются на параллельных осях.
Максимальное значение передаточного числа достигает 9 единиц.
Коэффициент полезного действия достаточно высокий. Его значение приближается к 0,98. Наиболее распространёнными являются конструкции, в которых применяются нескольких сателлитов. Их располагают с угловыми шагами равной величины.
Такие конструкции выполняются с постоянным или переменным передаточным отношением. Некоторые из них имеют возможность регулировки этого параметра. Они разработаны обратимыми и необратимыми. В обратимых образцах предусмотрено движение в прямом и обратном направлении. В необратимых конструкциях такое движение невозможно. Изменение передаточного отношения бывает ступенчатым или бесступенчатым. Ярким представителем первого агрегата является механическая коробка передач автомобиля. Второй вариант применяется в вариаторах.
Рассмотренные передаточные отношения передач рассчитываются на этапе проектирования агрегата при выборе кинематической схемы. С их помощью производится выбор типа соединения, определяется эффективность. Оценивается надёжность всего механизма.
Цепная передача
Хорошо известна цепная передача. Она относится к гибким конструкциям. Передаточное отношение цепной передачи рассчитывается расчёту зубчатых систем. Ведущая и ведомая звёздочка рассматриваются как зубчатые колеса. Значение этого параметра достигает 15.
Особенностью такой конструкции считается требование иметь определённое провисание цепи. Настройка этого параметра проводится с помощью специального регулирующего винта.
Достоинства подобного соединения сводятся к следующему:
К недостаткам можно отнести быстрый износ соединительных элементов цепи. Это требует периодической смазки. Вторым недостатком считается высокий уровень шума.
Кроме передаточного числа для них рассчитывается величина статистической разрушающей силы. Этот параметр зависит от требуемого коэффициента безопасности. Его задают в интервале от 6 до 10. Он обеспечивает качественную работу всего механизма, высокую надёжность соединения и долговечность.
Червячная передача
Необходимость изменения вращательного движения под углом требует создания специального вида систем. К таким конструкциям относится червячная передача. Основной элемент такой передачи может быть цилиндрической формы, глобоидным, эвольвентным, архимедовым винтом. Это зависит от поверхности, на которой расположена резьба, и профиля резьбы.
В качестве параметров, используемых для расчёта передаточного числа подставляемых в выражение, используют существующее количество заходов червячного механизма. Обычно оно варьируется от одного до четырёх. Таблица передаточных отношений для червячной схемы позволяет рассчитать необходимое количество элементов зацепления. Приведенные в этой таблице данные, помогают правильно выбрать соединения для конкретного механизма.
Основными недостатками передачи являются:
Ременная передача
Данная конструкция является часто встречающейся. Её тип определяется расположением вала и направлением движения ремня. Их классифицируют следующим образом:
Для повышения надёжности применяют спаренное соединение. Реализация подобных конструкций производится с помощью ремней различного сечения. Наиболее популярными являются три типа: прямоугольные, в форме трапеции, круглого сечения.
Значение передаточного отношения рассчитывается подстановкой в классическую формулу скоростей вращения ведущего и ведомого валов. Иногда в расчёте используют число оборотов каждого из валов. В качестве альтернативного варианта при расчёте этого параметра используются величины диаметров (радиусов) шкивов.