что такое пары взаимно простых чисел

Взаимно простые числа определение. Взаимно простые числа примеры. Что значит взаимно простые числа? Два взаимно простых числа

Что такое взаимно простые числа?

Взаимно простые числа определение

Определение взаимно простых чисел:

Взаимно простые числа примеры

Пример взаимно простых чисел:

У 2 и 3 нет иных общих делителей кроме единицы.

Ещё пример взаимно простых чисел:

У 3 и 7 нет иных общих делителей кроме едининицы.

Другой пример взаимно простых чисел:

У 11 и 13 нет иных общих делителей кроме едининицы.

Теперь мы можем ответить на вопрос, что значит взаимно простые числа.

Что значит взаимно простые числа?

Что значит взаимно простые числа?

Это целые числа, у которых нет общих делителей, кроме единицы.

Два взаимно простых числа

Каждая из этих пар есть два взаимно простых числа.

Общие делители взаимно простых чисел

Общие делители взаимно простых чисел – это только единица, что следует из определения взаимно простых чисел.

Наибольший общий делитель взаимно простых чисел

Наибольший общий делитель взаимно простых чисел – это единица, что следует из определения взаимно простых чисел.

Являются ли взаимно простыми числа?

Являются ли взаимно простыми числа 3 и 13? Да, ведь у них нет общих делителей, кроме единицы.

Являются ли взаимно простыми числа 3 и 12? Нет, ведь у них общими делителями являются 1 и 3. А по определению взаимно простых чисел общим делителем должна быть только единица.

Являются ли взаимно простыми числа 3 и 108? Нет, ведь у них общими делителями являются 1 и 3. А по определению взаимно простых чисел общим делителем должна быть только единица.

Являются ли взаимно простыми числа 108 и 5? Да, ведь у них нет общих делителей, кроме единицы.

Простые и взаимно простые числа

Свойство взаимно простых чисел:

Вопрос: являются ли взаимно простые числа всегда простыми?

Ответ: нет, взаимно простые числа могут не быть простыми.

Пример взаимно простых чисел, которые не являются простыми:

Числа 9 и 16 есть взаимно простые, но ни одно из них не является простым числом.

Источник

Взаимно-простые числа

Взаимно-простые числа — это натуральные числа, наибольший общий делитель (НОД) которых равен единице.

То есть, если НОД (a; b)=1, то числа a и b — взаимно-простые.

Делители числа 21: 1 ; 3; 7; 21.

Их единственный, а значит, и наибольший, общий делитель равен 1:

НОД (4; 21) = 1. Значит, 4 и 21 — взаимно-простые числа.

Делители 6: 1 ; 2; 3; 6.

Делители 35: 1 ; 5; 7; 35.

НОД (6; 35) = 1. Следовательно, числа 6 и 35 являются взаимно-простыми.

Делители 27: 1; 3 ; 9; 27.

Делители 33: 1; 3 ; 11; 33.

НОД (27; 33) = 3. Так как НОД (27; 33) ≠ 1, то 27 и 33 не являются взаимно-простыми числами.

Можно ли по внешнему виду определить, являются ли числа взаимно-простыми или нет? В некоторых случаях, можно.

Например, если оба числа чётные, то у них есть общий делитель 2, следовательно, два чётных числа не могут быть взаимно-простыми.

Если запись одного числа оканчивается на 5, а другого — на 5 или на 0, то оба числа делятся на 5, а значит, их НОД не единица, и эти числа не взаимно-простые.

Если числа простые, они делятся только на 1 и на себя, значит, их наибольший общий делитель равен 1 и они — взаимно-простые. Является ли число простым, проще всего определить по таблице простых чисел.

В остальных случаях наибольший общий делитель составных чисел находят, разложив эти числа на простые множители, используя признаки делимости. Если при разложении оказывается, что единственный общий делитель равен 1, то эти числа являются взаимно-простыми.

2 Comments

Это определение и для трех чисел? Например, 4, 7 и 15?

Источник

Что такое взаимно простые числа

Содержание статьи

что такое пары взаимно простых чисел. Смотреть фото что такое пары взаимно простых чисел. Смотреть картинку что такое пары взаимно простых чисел. Картинка про что такое пары взаимно простых чисел. Фото что такое пары взаимно простых чисел

Простым в математике называется такое число, которое можно разделить только на единицу и на само себя. 3, 7, 11, 143 и даже 1 111 111 – все это простые числа, причем каждое из них обладает данным свойством в отдельности.

Чтобы говорить о взаимно простых числах, их должно быть не менее двух. Данное понятие характеризует общий признак нескольких чисел.

Определение взаимно простых чисел

Взаимно простыми называются такие числа, которые не имеют общего делителя, не считая единицы – например, 3 и 5. При этом каждое число в отдельности может и не быть простым само по себе.

Например, число 8 к таковым не относится, ведь его можно разделить на 2 и на 4, но 8 и 11 – взаимно простые числа. Определяющим признаком здесь является именно отсутствие общего делителя, а не характеристики отдельных чисел.

Впрочем, два и более простых числа всегда будут взаимно простыми. Если каждое из них делится лишь на единицу и на само себя, то общего делителя у них быть не может.

Для взаимно простых чисел существует особое обозначение в виде горизонтального отрезка и опущенного на него перпендикуляра. Это соотносится со свойством перпендикулярных прямых, у которых нет общего направления, как и у этих числе нет общего делителя.

Попарно взаимно простые числа

Возможно и такое сочетание взаимно простых чисел, из которого можно взять наугад любые два числа, и они обязательно окажутся взаимно простыми. Например, 2, 3 и 5: общего делителя не имеют ни 2 и 3, ни 2 и 5, ни 5 и 3. Такие числа именуют попарно взаимно простые.

Не всегда взаимно простые числа бывают попарно взаимно простыми. Например, числа 15, 20 и 21 – это взаимно простые числа, но назвать их попарно взаимно простыми нельзя, ведь 15 и 20 делятся на 5, а 15 и 21 – на 3.

Применение взаимно простых чисел

В цепной передаче, как правило, количество звеньев цепи и зубьев звездочки выражаются взаимно простыми числами. Благодаря этому каждый из зубьев соприкасается с каждым звеном цепи поочередно, механизм меньше изнашивается.

Существует и еще более интересное свойство взаимно простых чисел. Необходимо начертить прямоугольник, длина и ширина которого выражаются взаимно простыми числами, и провести из угла внутрь прямоугольника луч под углом 45 градусов. В точке соприкосновения луча со стороной прямоугольника нужно начертить другой луч, расположенный под углом 90 градусов к первому – отражение. Делая такие лучи-отражения раз за разом, можно получить геометрический узор, в котором любая часть по структуре подобна целому. С точки зрения математики такой узор является фрактальным.

Источник

Взаимно простые числа – какие, примеры, определение, таблица (6 класс, математика)

Взаимно простые числа тема достаточно сложная тема 6 класса математики. Как и простые числа, тема взаимно простых чисел используется для сложения и вычитания дробей. Чтобы не допускать ошибок в этой теме разберемся в вопросе подробнее.

что такое пары взаимно простых чисел. Смотреть фото что такое пары взаимно простых чисел. Смотреть картинку что такое пары взаимно простых чисел. Картинка про что такое пары взаимно простых чисел. Фото что такое пары взаимно простых чисел

Простые числа

Что такое простое число? Простое число делится только на ноль и на само себя. Например, число 13 является простым, так как нацело делится только на 1 и на 13. Секрет в том, что практически каждое число можно разделить на другое число. Но в простых числах важно именно деление нацело, дробные частные и деление с остатком не рассматривается.

Простые числа в знаменателях дробей означают, что для нахождения общего знаменателя нужно перемножить эти числа между собой. Разложить простые числа на множители невозможно. Поэтому НОД двух простых чисел это их произведение.

Числа, которые содержат в себе больше двух множителей, то есть делятся на несколько чисел, называются сложными. Сложные числа состоят из перемноженных простых.

Взаимно простые числа

Взаимно простыми числами называются числа, наибольший общий делитель которых равен единицы. Доказать факт того, что числа являются взаимно простыми можно только с помощью разложения чисел на простые множители. Если у чисел нет общих множителей, кроме 1, то они будут взаимно простыми.

При этом сами по себе взаимно простые числа могут быть сложными. Важен именно НОД двух чисел.

Нужно учитывать, что взаимно простыми могут быть не только два числа, но и 3, 4, 10 – любое множество чисел может быть взаимно простым.

Как определить взаимно простые числа?

Для того чтобы определить взаимно простые числа, можно воспользоваться двумя алгоритмами:

Относительно друг друга два простых числа всегда будут взаимно простыми. А если одно из чисел, делится на другое нацело, то эти числа точно не являются взаимно простыми.

Пример

Определим, являются ли взаимно простыми числа 1729 и 282

Определение начинается с разложения на множители:

Обратите внимание, что для разложения таких чисел придется использовать метод перебора. Согласно таблице простых чисел каждый множитель проверяется, после чего деление продолжается. Подбирать множители нужно от маленьких чисел к большим, то есть от 2 и выше.

Как видно, общих множителей у двух чисел нет. Это значит, что числа можно считать взаимно простыми. Не нужно пугаться, если среди множителей попадаются достаточно большие числа. Среди учеников существует миф, что простые числа редко бывают больше 20, это не так. Просто такие числа проще использовать в задачах, чтобы набить руку. На экзамене или в контрольной сложность числа для разложения может быть абсолютно любой

Что мы узнали?

Мы поговорили о простых числах. Выяснили, что такое взаимно простые числа и обговорили некоторые их свойства. Привели примеры взаимно простых чисел. Обговорили неправильные мнения по поводу простых и взаимно простых чисел.

Источник

Взаимно простые числа: определение, примеры и свойства

В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.

Что такое взаимно простые числа

Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.

Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.

На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.

Решение

Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.

Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.

Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.

Решение

Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.

Ответ: все эти числа будут взаимно простыми по отношению друг к другу.

Решение

Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.

Основные свойства взаимно простых чисел

Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.

Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.

Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.

Понятие попарно простых чисел

Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *