что такое паровой риформинг
Реакция сильно эндотермична (расходуется тепло, ΔH r = 206 кДж / моль).
Паровая конверсия природного газа производит большую часть водорода в мире. Водород используется в промышленном синтезе аммиака и других химикатов.
СОДЕРЖАНИЕ
Производственная практика
Посредством реакции конверсии водяного газа можно получить дополнительный водород путем обработки монооксида углерода, образующегося при паровой конверсии, водой:
США производит 9-10 миллионов тонн водорода в год, в основном с парового риформинга природного газа. Мировое производство аммиака с использованием водорода, полученного в результате парового риформинга, составило 144 миллиона тонн в 2018 году. Потребление энергии снизилось со 100 ГДж / тонну аммиака в 1920 году до 27 ГДж к 2019 году.
Эффективность парового риформинга природного газа составляет 65–75%.
Производство H 2 и CO из углеводородных газов (например, природного газа) осуществляется двумя хорошо известными установками «первичного» и «вторичного» риформинга. Паровой риформинг метана (SMR) и автотермический риформинг (ATR) являются двумя промышленными примерами первичного и вторичного риформинга соответственно. С другой стороны, в процессе комбинированного риформинга используются как первичные, так и вторичные инструменты для производства синтез-газа, как это обычно практикуется при производстве аммиака. В случае метанола в АТР подают почти чистый кислород (99,5%), а не воздух, поскольку присутствие избыточного N 2 в синтез-газе приведет к чрезмерному сжатию и замедлению производства метанола. Риформер ATR состоит из камеры частичного окисления (POX) (обычно некаталитической среды) и каталитической секции с неподвижным слоем. Каталитический неподвижный слой не только регулирует соотношение H 2 / CO, но также уничтожает любую возможную сажу и предшественник (например, этилен и ацетилен), которые могут образоваться в камере POX. Природный газ (ПГ) частично окисляется в камере сгорания кислородом или воздухом (в качестве окислителя). Отношение водяного пара к углероду (S / C), которое обычно составляет 0,6 в случае с кислородом, было коммерциализировано компанией Haldor-Topsoe.
Автотермический риформинг
Реакции можно описать следующими уравнениями с использованием CO 2 :
Основное различие между SMR и ATR заключается в том, что SMR использует только воздух для сгорания в качестве источника тепла для создания пара, в то время как ATR использует очищенный кислород. Преимущество ATR состоит в том, что H 2 : CO можно варьировать, что может быть полезно для производства специальных продуктов.
Частичное окисление
Частичное окисление (POX) происходит, когда субстехиометрическая топливно-воздушная смесь частично сгорает в риформинг-установке с образованием синтез-газа, обогащенного водородом. POX обычно намного быстрее, чем паровой риформинг, и требует меньшего размера реактора. POX производит меньше водорода на единицу входящего топлива, чем паровой риформинг того же топлива.
Паровой риформинг в малых масштабах
Капитальные затраты на установки парового риформинга считаются непомерно высокими для малых и средних предприятий. Затраты на эти сложные объекты не уменьшаются. Обычные установки парового риформинга работают при давлении от 200 до 600 фунтов на квадратный дюйм (14-40 бар) с температурами на выходе от 815 до 925 ° C.
Для двигателей внутреннего сгорания
Сжигаемый газ и выбрасываемые летучие органические соединения (ЛОС) являются известными проблемами в морской промышленности и в наземной нефтегазовой промышленности, поскольку оба выделяют парниковые газы в атмосферу. При реформинге двигателей внутреннего сгорания используется технология парового риформинга для преобразования отходящих газов в источник энергии.
Для топливных элементов
Недостатки
Стоимость производства водорода путем реформинга ископаемого топлива зависит от масштаба, в котором он проводится, капитальных затрат на установку реформинга и эффективности установки, так что, хотя на промышленном предприятии это может стоить всего несколько долларов за килограмм водорода. масштаб, он мог бы быть более дорогим в меньшем масштабе, необходимом для топливных элементов.
Проблемы с установками риформинга, поставляющими топливные элементы
Однако с этой технологией связано несколько проблем:
Паровой риформинг
Реакция сильно эндотермична (расходуется тепло, ΔH r = 206 кДж / моль).
Паровая конверсия природного газа производит большую часть водорода в мире. Водород используется в промышленном синтезе аммиака и других химикатов. [2]
СОДЕРЖАНИЕ
Производственная практика [ править ]
Посредством реакции конверсии водяного газа можно получить дополнительный водород путем обработки монооксида углерода, образующегося при паровой конверсии, водой:
США производит 9-10 миллионов тонн водорода в год, в основном с парового риформинга природного газа. [4] Мировое производство аммиака с использованием водорода, полученного в результате парового риформинга, составило 144 миллиона тонн в 2018 году. [5] Потребление энергии снизилось со 100 ГДж / тонну аммиака в 1920 году до 27 ГДж к 2019 году. [6]
Эффективность парового риформинга природного газа составляет 65–75%. [7]
Производство H 2 и CO из углеводородных газов (например, природного газа) осуществляется двумя хорошо известными установками «первичного» и «вторичного» риформинга. Паровой риформинг метана (SMR) и автотермический риформинг (ATR) являются двумя промышленными примерами первичного и вторичного риформинга соответственно. С другой стороны, в процессе комбинированного риформинга используются как первичные, так и вторичные инструменты для производства синтез-газа, как это обычно практикуется при производстве аммиака. В случае метанола в ATR подается почти чистый кислород (99,5%), а не воздух, поскольку присутствие избыточного N 2в синтез-газе будет перекрывать сжатие и замедлять производство метанола. Риформер ATR состоит из камеры частичного окисления (POX) (обычно некаталитической среды) и каталитической секции с неподвижным слоем. Каталитический неподвижный слой не только регулирует соотношение H 2 / CO, но также уничтожает любую возможную сажу и предшественник (например, этилен и ацетилен), которые могут образоваться в камере POX. Природный газ (ПГ) частично окисляется в камере сгорания кислородом или воздухом (в качестве окислителя). Отношение пара к углероду (S / C), которое обычно составляет 0,6 в случае с кислородом, было коммерциализировано компанией Haldor-Topose. [8]
Автотермический риформинг [ править ]
Реакции можно описать следующими уравнениями с использованием CO 2 :
Частичное окисление [ править ]
Частичное окисление (POX) происходит, когда субстехиометрическая топливно-воздушная смесь частично сгорает в риформинг-установке с образованием синтез-газа, обогащенного водородом. POX обычно намного быстрее, чем паровой риформинг, и требует меньшего размера реактора. POX производит меньше водорода на единицу входящего топлива, чем паровой риформинг того же топлива. [10]
Реформирование пара в малых масштабах [ править ]
Капитальные затраты на установки парового риформинга считаются непомерно высокими для малых и средних предприятий. Затраты на эти сложные объекты не уменьшаются. Обычные установки парового риформинга работают при давлении от 200 до 600 фунтов на квадратный дюйм (14-40 бар) с температурами на выходе в диапазоне от 815 до 925 ° C.
Для двигателей внутреннего сгорания [ править ]
Сжигаемый газ и выбрасываемые летучие органические соединения (ЛОС) являются известными проблемами в морской промышленности и в наземной нефтегазовой промышленности, поскольку оба выделяют парниковые газы в атмосферу. [11] При реформинге двигателей внутреннего сгорания используется технология парового риформинга для преобразования отработанных газов в источник энергии. [12]
Для топливных элементов [ править ]
Недостатки [ править ]
Система реформинга с топливными элементами все еще исследуется, но в ближайшем будущем системы будут продолжать работать на существующих видах топлива, таких как природный газ, бензин или дизельное топливо. Тем не менее, ведутся активные дебаты о том, выгодно ли использование этих видов топлива для производства водорода, в то время как глобальное потепление является проблемой. Реформирование ископаемого топлива не устраняет выбросы диоксида углерода в атмосферу, но снижает выбросы диоксида углерода и почти исключает выбросы монооксида углерода по сравнению со сжиганием обычных видов топлива за счет повышения эффективности и характеристик топливных элементов. [17] Однако, превратив выброс углекислого газа в точечный источник, а не распределенный выброс, улавливание и хранение углерода становится возможным, что предотвратит выброс углекислого газа в атмосферу, увеличивая при этом стоимость процесса.
Стоимость производства водорода путем реформинга ископаемого топлива зависит от масштаба, в котором это делается, капитальных затрат на установку реформинга и эффективности установки, так что, хотя в промышленных масштабах это может стоить всего несколько долларов за килограмм водорода, он может быть более дорогим при меньшем масштабе, необходимом для топливных элементов. [18]
Проблемы с установками риформинга, поставляющими топливные элементы [ править ]
Однако с этой технологией связано несколько проблем:
Установка производства водорода
Назначение
Установка производства водорода предназначена для обеспечения техническим водородом вновь вводимых установок:
Строительство установки производства водорода позволит:
Методы производства водорода
Сырье и продукты
На российских НПЗ наиболее распространенным методом получения водорода является паровая конверсия углеводородов (СУГ, нафты, природного газа).
Продуктами являются чистый водород с концентрацией >99% об., а также отдувочный газ, который чаще всего используется в качестве топлива для печей.
Катализаторы
Наиболее часто используемыми в промышленности катализаторами для процесса паровой конверсии являются катализаторы на основе никеля, однако в ряде специфических процессов допускается использование благородных металлов платиновой группы.
Технологическая схема
В состав установки производства водорода входят следующие блоки и узлы:
Очистка сырья
Природный газ поступает в подогреватель, нагревается до температуры 40 °С. Для гидрирования сернистых соединений, содержащихся в сырье, до сероводорода, требуется небольшое количество водорода.
С этой целью часть водорода, полученного на установке, подается в качестве рециркуляционного водорода в поток сырья. Смесь сырья и рециркулирующего водорода, последовательно поступая в теплообменники, нагревается до температуры 380 °С, необходимой для предварительной очистки сырья.
Подогретая газосырьевая смесь поступает в реактор гидрообессеривания, где происходит гидрирование соединений серы до H2S. Газосырьевая смесь из реактора последовательно проходит через адсорберы, где происходит улавливание хлоридов (НСl) и сернистых соединений (H2S). В каждом из этих реакторов имеется три слоя катализатора:
Предриформинг
Очищенная газосырьевая смесь смешивается с перегретым паром высокого давления. Соотношение расходов регулируется с поддержанием заданного мольного соотношения водяного пара и углерода. Величина значения этого соотношения зависит от типа сырья, подаваемого на установку.
Далее парогазовая смесь нагревается до температуры реакции 475 °С – 500 °С, в змеевике подогрева сырья предриформинга, расположенном в конвекционной секции печи парового риформинга и направляется в реактор предриформинга.
В зависимости от типа перерабатываемого сырья, может наблюдаться увеличение или снижение общей температуры по реактору. Так при переработке бензинов увеличивается общая температура по реактору, за счет преобладания протекания реакций с экзотермическим эффектом, а при переработке природного газа температура по реактору падает, за счет протекания реакций с эндотермическим эффектом.
Риформинг
Парогазовая смесь нагревается до температуры 650 °С в змеевике подогрева сырья риформинга, расположенном в конвекционной секции печи парового риформинга, и затем поступает в коллектор, расположенный в радиантной секции печи парового риформинга.
В радиантной секции печи парового риформинга смесь сырья и пара поступает в катализаторные трубы, находящиеся в радиантной секции печи парового риформинга Н-1, проходит сверху вниз катализаторные трубы. В результате реакции, протекающей на катализаторе, загруженном в катализаторные трубы, получается равновесная смесь, состоящая из Н2, СО, СO2, СН4 и Н2O.
Для предотвращения образования кокса и отложения его на катализаторе технологический пар подается в избытке, превышая стехиометрическое количество, требуемого на реакцию.
Полученный конвертированный газ (парогазопродуктовая смесь) выходит из печи парового риформинга при температуре 888 °С и далее направляется в теплообменник. В теплообменнике происходит охлаждение питательной воды до температуры 320-343 °С, регенерированное тепло используется для генерирования насыщенного пара высокого давления.
Общий тепловой эффект реакций парового риформинга является в сильной степени эндотермическим, поэтому для достижения требуемой степени конверсии необходим подвод тепла.
Конструкция печи парового риформинга
Печь имеет сложную конструкцию, разработанную с учетом технологических требований процесса с целью обеспечения безопасной эксплуатации и хорошими технико-экономическими показателями. Для обеспечения расчетной степени конверсии без перегрева внешней поверхности поддерживается необходимая температура газа в катализаторных трубах. Благодаря небольшому диаметру труб увеличивается площадь теплообменной поверхности и улучшается перемешивание газа в слое катализатора. В результате печи риформинга работают при максимальных давлениях и температурах.
По конструкции печь состоит из двух одинаковых радиантных камер, работающих параллельно, и расположенной над ними общей конвекционной камеры. Процесс паровой конверсии метана осуществляется в реакционных трубах при температуре 780-888 °С за счет внешнего обогрева.
Конверсия окиси углерода и охлаждение синтез-газа
Водородсодержащий газ после парового риформинга и охлаждения поступает в реактор высокотемпературной конверсии, где избыточный пар превращает большую часть СО в С02 и Н2 при прохождении через слой катализатора.
Синтез-газ, подвергнутый конверсии, охлаждается, отдавая тепло потокам системы выработки водяного пара. Далее частично охлажденный синтез-газ поступает в воздушный, а затем на доохлаждение в водяной холодильник, где охлаждается до температуры 35 °С и поступает в сепаратор для разделения смеси на неочищенный водород и технологический конденсат.
Технологический конденсат смешивается с химочищенной водой, поступающей из сетей завода и направляется в деаэратор, а неочищенный водород подается в блок короткоцикловой адсорбции.
Короткоцикловая адсорбция водородсодержащего газа
Поток неочищенного водородсодержащего газа поступает в блок короткоцикловой адсорбции (КЦА), где происходит удаление примесей в процессе циклической адсорбции. Для выполнения заданной степени концентрирования водорода и удаления примесей в процессе используются многочисленные адсорбционные слои. Принятая схема блока позволяет извлечь водород с концентрацией 99,5 % (об.) из конвертированного газа, а сбросной газ направляется в качестве топлива в реакторную печь.
В блоке КЦА происходит очистка конвертированного водородсодержащего газа от примесей метана, окислов углерода путем адсорбции загрязнений на адсорбенте при высоком давлении и десорбции при низком давлении.
Блок утилизации тепла дымовых газов
В блоке утилизации тепла дымовых газов и продуктовых потоков производится водяной пар высокого давления за счет охлаждения дымовых газов и продуктовых потоков. Одновременно с этим предусмотрено использование тепла дымовых газов для нагрева питательной воды, перегрева производимого водяного пара и подогрева воздуха, подаваемого к горелкам печи.
Материальный баланс
Наименование продукта | Измерение | Сутки | |
един. | итого | % | |
Входы | |||
Сырьевой газ | т | 276,00 | 22,30 |
Расход пара ВД в предриформинг | т | 633,60 | 51,20 |
Расход пара ВД в риформинг | т | 327,90 | 26,50 |
Сумма сырья | т | 1 237,50 | 100,00 |
Выходы | |||
Водород с установки | т | 89,70 | |
Расход отдувочного газа с блока КЦА на печь | т | 605,10 | |
Расход технологического конденсата | т | 542,70 | |
Сумма продуктов | т | 1 237,50 |
Достоинства и недостатки
Недостатки
Достоинства
Существующие установки
Спрос на водород растет в связи с переходом на потребление более чистых и легких нефтяных топлив, в то время как нефтяное сырье становится все тяжелее. В связи с этим трудно представить современный НПЗ без установки производства водорода. УПВ может отсутствовать только в составе НПЗ, работающих по профилю первичной переработки нефти. Стоит отметить, что для производств, обладающих развитой архитектурой вторичных процессов, ресурсов одной УПВ может быть недостаточно.
Технология получения синтез-газа паровой конверсией углеводородов
Авторы: С.В. Афанасьев (Тольяттинский государственный университет), О.С. Рощенко (ОАО «Тольяттиазот»), С.П. Сергеев (ОАО «ГИАП»).
Опубликовано в журнале Химическая техника №6/2016
Cинтез-газ является смесью водорода и оксида углерода и широко используется в химической промышленности для получения базовых продуктов – аммиака, метанола, уксусной кислоты и др. Кроме того, он применяется в качестве экологически чистого источника тепловой энергии.
Сегодня существуют три основных метода производства синтез-газа. 1. Газификация угля. Данный процесс основан на взаимодействии каменного угля с водяным паром и протекает по формуле
Приведенная реакция является эндотермической, и равновесие при температуре 900…1000°С сдвигается вправо. Разработаны различные технологические процессы, использующие парокислородное дутье, благодаря которому наряду с упомянутой реакцией параллельно протекает экзотермический процесс сгорания угля, который обеспечивает необходимый тепловой баланс. 2. Конверсия метана – взаимодействие водяного пара и метана при повышенных значениях температуры и давлении в присутствии никелевых катализаторов (Ni–Al2O3):
Вместо метана можно использовать любое сырье, содержащее углеводороды. 3. Парциальное окисление углеводородов. Данный процесс, происходящий при температурах выше 1300°С, заключается в термическом окислении углеводородов:
CnH2n +2 + 1/2nO2 → nCO + (n + 1)H2.
Настоящее исследование посвящено усовершенствованию промышленного способа получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья в трубчатых реакторах с использованием катализаторов определенной конструктивной формы с целью внедрения на крупнотоннажных производствах аммиака, метанола, уксусной кислоты и водорода.
При осуществлении указанного процесса реализуются следующие эндои экзотермические реакции:
СnHm + nH2O → nCO + (n + m/2)H2 (–ΔHо 298 Способ осуществления парового риформинга
%
Как видно, по сравнению с известным методом наблюдается снижение содержания метана в вырабатываемом синтез-газе, что указывает на повышение активности катализатора.
Согласно выполненным кинетическим и теплофизическим расчетам, установка в печи риформинга реакционных труб с уменьшенным внутренним диаметром (101 мм) позволит снизить температуру конвертированного газа и содержание остаточного метана, существенно повысить производительность установки по синтезгазу (табл. 2).
Параметры работы печи риформинга с реакционными трубами разного диаметра
Производительность, т/сутки | 1950…2000 | 1750…1800 | 1440 | 1440 (база) |
Внутренний диаметр трубы, мм | 101 | 101 | 102 | 89 |
Температура конвертированного газа, °С: | ||||
в центре трубы | 718,5 | 721,1 | 732,1 | 732,9 |
у стенки | 743,5 | 745,8 | 755,6 | 752,4 |
Линейная скорость, м/с: | ||||
в центре трубы | 2,233 | 2,084 | 1,996 | 2,536 |
у стенки | 2,288 | 2,126 | 2,002 | 2,549 |
Содержание метана в сухом газе на выходе из трубы, мол. % | 13,2557 | 12,1942 | 11,7262 | 12,6346 |
Соотношение пар : газ на выходе из реакционной трубы | 0,8831 | 0,8533 | 0,8009 | 0.8260 |
Выводы
Использование предлагаемого технического решения позволяет улучшить теплоперенос через стенку труб в печи риформинга и как результат снизить разность температур между их наружной поверхностью и выходящим синтез-газом. Одновременно с этим удается уменьшить перепад давления по катализаторному слою, сократить расход топливного газа на проведение конверсии, увеличить выработку синтез-газа на агрегатах аммиака.