что такое отношение порядка
puuuk
puuuk
Отношение порядка
Бинарное отношение R на множестве X называется отношением порядка, если имеют место
Отношение порядка называется нестрогим, если оно
Напротив, отношение строгого порядка
Отношение порядка называется полным (линейным), если любые два элемента множества так или иначе связаны этим отношением, т.е.:
Полностью (линейно) упорядоченное множество называют также цепью. Очевидно, полнота (линейность) отношения порядка влечет рефлексивность этого отношения, поэтому такой порядок всегда нестрогий.
Рефлексивное, транзитивное, антисимметричное отношение называется частичным порядком. А рефлексивное, транзитивное (но не обязательно антисимметричное!) отношение называется квазипорядком (или предпорядком).
Обычно отношение строгого порядка (полного или частичного) обозначается знаком изобретены Томасом Гарриотом (1560-1621).
БИНАРНЫЕ ОТНОШЕНИЯ. ОТНОШЕНИЕ ПОРЯДКА
1. Что такое порядок?
Порядок играет огромную роль в нашей жизни. Люди на протяжении всей истории пытались упорядочить отношения между собой, окружающие явления. Без порядка невозможно представить жизнь человека. Попробуйте представить общество, в котором царит анархия или словарь, в котором слова расположены хаотично. Но что такое порядок? С некоторыми упорядочениями мы настолько свыклись, что часто их просто не осознаем, как, например, грамматический порядок слов в предложении. В данной статье дано формальное определение порядка, которое используется в математике.
Определение 1.1. Бинарное отношение a на множестве X называется отношением порядка, если оно транзитивно:
Пример 1.1. Рассмотрим отношение «старше» на множестве людей. Очевидно, что оно транзитивно и антисимметрично, и, следовательно, является отношением порядка.
Пример 1.2. Иерархия животных, построенная по этапам эволюции, является отношением порядка (рис.1).
Рис. 1. Основные этапы эволюции эукариотических организмов
Так, например, на рисунке 2 приведен ориентированный граф, представляющий отношение = <(a, a), (a, b), (a, c), (b, c)> на множестве M = <a, b, c, d>.
Рис. 2. Граф упорядоченного множества
Задать порядок на множестве можно различными способами. Так, например, на рисунке 3 приведено три способа упорядочения четырех стран.
Рис. 3. Три способа упорядочения
На рисунке 4 приведены ориентированные графы, представляющие отношения «делится» и «меньше» на множестве M = <1, 2, 3, 4> натуральных чисел.
Рис. 4. Графы отношений «делится» (а) и «меньше» (б) на множестве <1,2,3,4>
2. Разновидности отношений порядка
Определение 2.1. Отношение порядка a называется отношением нестрогого порядка на множестве X, если a рефлексивно:
Пример 2.1. Отношение на множестве действительных чисел является отношением нестрогого порядка.
Пример 2.2. На совокупности подмножеств некоторого универсального множества U отношение является отношением нестрогого порядка.
Пример 2.3. Отношение подчиненности в учреждении является нестрогим порядком на множестве сотрудников учреждения.
Пример 2.4. Отношение (m делит n) на произвольном подмножестве натуральных чисел является нестрогим порядком. На рисунке 5 приведен граф, соответствующий упорядоченному множеству
Рис. 5. Граф нестрого упорядоченного множества
Пример 2.5. Тождественное отношение является как отношением эквивалентности, так и отношением нестрогого порядка.
Несравнимыми элементами в упорядоченном множестве из примера 4 являются, например, элементы 7 и 2, 2 и 3, 3 и 7.
Определение 2.3. Отношение порядка a называется отношением строгого порядка на множестве X, если a антирефлексивно:
Отношение строгого порядка обозначается символом
Для функций f и g, изображенных на рисунке 6, имеет место соотношение f > g. Пары функций f и h, а также g и h несравнимы.
Пример 2.7. Алфавитный порядок является отношением строгого порядка на множестве букв.
Отношение является строгим порядком.
Пример 2.9. Другой способ задания строгого порядка на множестве состоит в следующем. Будем считать, что выполнено соотношение (a, b) (c, d), если
Это отношение порядка называется лексикографическим. В общем случае оно определяется следующим образом. Для слов v и w одинаковой длины полагается v 0) разной длины считается v
Определение 2.5. Связное отношение порядка на множестве X называется отношением линейного порядка.
Пример 2.10. Лексикографический порядок слов в словаре является линейным порядком.
Пример 2.11. Отношение включения на множестве фигур линейным порядком не является (рис. 7).
Рис. 7. Две несравнимые фигуры
Пример 2.12. Отношение «старше» на множестве людей является линейным порядком.
Пример 2.13. Рассмотрим множество людей. Их можно упорядочить различным образом, например, по росту (рис. 8).
Соответствующий общий прием упорядочения некоторого множества состоит в следующем. Пусть на множестве X определена инъективная функция
принимающая вещественные числовые значения. Зададим отношение
Определение 2.6. Пусть на множестве X задано отношение строгого порядка y) называется наименьшим (наибольшим).
Если, как обычно, в случае x
В случае линейного строго порядка минимальный элемент x обладает тем дополнительным свойством, что для всякого выполнено x
Чтобы понять различие между минимальным и наименьшим элементами, рассмотрим пример.
Пример 2.14. На рисунке 9 изображена диаграмма упорядоченного множества, в котором нет ни наименьшего, ни наибольшего элементов, но в то же время есть ровно 1 минимальный и ровно 1 максимальный элемент.
Рис.9. Упорядоченное множество
Рассмотрим подробнее конечные строго упорядоченные множества.
Лемма 2.1. Если на конечном (непустом) множестве X задан линейный строгий порядок, то существует наименьший элемент, и он единственен.
Теорема 2.1. Пусть дано отношение линейного строгого порядка
Эта теорема в сущности означает, что любой линейный строгий порядок на конечном множестве X равносилен обычному порядку на некотором отрезке натурального ряда.
С отношением порядка непосредственно связано отношение доминирования.
Рассмотрим три отношения частичного порядка и построим для них диаграммы Хассе.
Пример 2.15. Пусть A = <1, 2, 3>. На множестве всех подмножеств множества A рассмотрим отношение «быть подмножеством». Диаграмма этого упорядоченного множества приведена на рисунке 10(а).
Пример 2.16. Пусть X = <1, 2, 3, 5, 6, 10, 15, 30>. Введем на этом множестве отношение «делится». Диаграмма этого упорядоченного множества приведена на рисунке 10(б).
Пример 2.17. На множестве X = <1, 2, 3, 4, 5, 6, 7, 8> рассмотрим отношение линейного порядка
Рис. 10. Диаграммы Хассе
Заметим, что диаграммы Хассе первых двух отношений совпадают. Это означает, что эти частично упорядоченные множества имеют одинаковую структуру, причем отличную от структуры третьего упорядоченного множества, хотя оно тоже содержит восемь элементов. Более точно такая общность структуры определяется понятием изоморфизма.
Упорядоченные множества, рассмотренные в примерах 1 и 2 изоморфны.
Теорема 2.2. Всякое нестрого упорядоченное множество изоморфно некоторой системе подмножеств множества X, нестрого упорядоченной отношением включения.
Операции над отношениями порядка
Перейдем теперь к обсуждению вопросов, связанных с упорядочением по разным критериям. Пусть у нас имеется несколько отношений порядка. Как по ним построить новое отношение порядка?
Исходя из операций над множествами, мы можем определить ряд операций над отношениями. Далее будем полагать, что все отношения заданы на одном и том же множестве X.
Определение 3.1. Пересечением отношений называется отношение, определяемое пересечением соответствующих подмножеств. Ясно, что выполнено тогда и только тогда, когда одновременно выполнены соотношения и.
Можно ввести операции непосредственно не сводящиеся к теоретико-множественным.
Прежде чем мы перейдем к теоремам, относящимся к отношению порядка, рассмотрим несколько вспомогательных утверждений (ввиду их простоты мы приводим их без доказательства).
Лемма 3.1. Если отношения и рефлексивны, то рефлексивны и следующие отношения:
Лемма 3.2. Если отношения и симметричны, то симметричны и следующие отношения:
Лемма 3.3. Чтобы произведение симметричных отношений и было симметрично, необходимо и достаточно, чтобы отношения и коммутировали.
Антисимметричность может не сохраняться при объединении и произведении.
Из лемм 3.1, 3.2, 3.3, 3.4 вытекают следующие две теоремы.
Замечание. Пересечение строгого и нестрогого порядка есть строгий порядок.
Теорема 3.2. Если отношение является строгим (нестрогим, линейным) порядком, то и отношение является строгим (нестрогим, линейным) порядком.
Теорема 3.4. Для того чтобы объединение нестрогих порядков и было нестрогим порядком, необходимо и достаточно выполнение условий
Произведение порядков также не обязано быть порядком. Это видно из того хотя бы, что для линейного нестрогого порядка произведение
есть полное отношение. Достаточным условием является, например, такое.
Заключение
В данной лекции мы рассмотрели определения, разновидности и свойства отношений порядка. Однако, при этом не был затронут достаточно важный вопрос, как на практике строить отношения порядка? Этой проблемой занимаются такие разделы математики как теория выбора и принятия решений, теория голосования в больших и малых группах. Указанный вопрос мы рассмотрим в одной из следующих лекций.
Что такое отношение порядка
1.6 пФОПЫЕОЙС РПТСДЛБ
пФОПЫЕОЙС РПТСДЛБ ХУФБОБЧМЙЧБАФУС ОБ НОПЦЕУФЧЕ, ЛПЗДБ ДМС ОЕЛПФПТЩИ ЙМЙ ЧУЕИ РБТ ЕЗП ЬМЕНЕОФПЧ ПРТЕДЕМСЕФУС ПФОПЫЕОЙЕ РТЕДЫЕУФЧПЧБОЙС a
мЙОЕКОП ХРПТСДПЮЕООЩН СЧМСЕФУС НОПЦЕУФЧП ФПЮЕЛ ОБ РТСНПК У ПФОПЫЕОЙЕН «РТБЧЕЕ», НОПЦЕУФЧБ ГЕМЩИ, ТБГЙПОБМШОЩИ, ДЕКУФЧЙФЕМШОЩИ ЮЙУЕМ РП ПФОПЫЕОЙА «ВПМШЫЕ» Й Ф.Р.
тЙУХОПЛ 15 |
фЕРЕТШ РПУФТПЙН ФБЛХА ЦЕ УИЕНХ ДМС ПФОПЫЕОЙС s t ОБ ВХМЕБОЕ (НОПЦЕУФЧЕ ЧУЕИ РПДНОПЦЕУФЧ) ФТЕИЬМЕНЕОФОПЗП НОПЦЕУФЧБ M3=. B(M3) УПДЕТЦЙФ 8 ЬМЕНЕОФПЧ:
тЙУХОПЛ 16 |
вЙОБТОЩЕ ПФОПЫЕОЙС R ОБ НОПЦЕУФЧЕ б Й S ОБ НОПЦЕУФЧЕ ч ОБЪЩЧБАФУС ЙЪПНПТЖОЩНЙ, ЕУМЙ НЕЦДХ б Й ч НПЦОП ХУФБОПЧЙФШ ЧЪБЙНОП ПДОПЪОБЮОПЕ УППФЧЕФУФЧЙЕ з, РТЙ ЛПФПТПН, ЕУМЙ a1Ra2 (Ф.Е. ЬМЕНЕОФЩ a1 Й Б2 ОБИПДСФУС Ч ПФОПЫЕОЙЙ R ), ФП з(a1)Sз(a2) (ПВТБЪЩ ЬФЙИ ЬМЕНЕОФПЧ ОБИПДСФУС Ч ПФОПЫЕОЙЙ S).
фБЛ, ЮБУФЙЮОП ХРПТСДПЮЕООЩЕ НОПЦЕУФЧБ D30 Й ч(н3) ЙЪПНПТЖОЩ. тБУУНПФТЕООЩК РТЙНЕТ ДПРХУЛБЕФ ПВПВЭЕОЙЕ.
тЙУХОПЛ 17
Отношения. Часть I
Формальная теория моделирования использует алгебраические отношения, включая их в сигнатуры моделей алгебраических структур, которыми описывает реальные физические, технические и информационные объекты, процессы их функционирования. К числу последних я отношу, например, базы данных (реляционные базы данных (РеБД)). Не менее важной считаю область принятия решений, которая состоит из двух основных статистической и алгебраической, основанной целиком на теории отношений. Образовательный уровень специалистов в этой теории близок к нулю.
Откройте учебник по специализации и там увидите в лучшем случае об эквивалентностях, которые авторами трактуются весьма своеобразно. Одного защитившегося уже ДТН спрашиваю: Вы рассматриваете отношение эквивалентности на указывая ни носителя отношения, ни конкретного отношения, как оно у Вас выглядит в записи? Ответ: как выглядит — обыкновенно. Выясняется, что он обо всем этом имеет весьма смутное представление.
Публикаций по проектированию РеБД, кроме иностранных статей назвать затрудняюсь. В 90-х годах был оппонентом, писал отзыв на диссертацию, где рассматривались и иерархические, и сетевые, и реляционные БД. Но как-то год, полтора назад опять на отзыв пришла работа, автор пишет уже только о РеБД, о нормализации отношений БД, но теоретической новизны не показал. Во многих ВУЗах читается курс о базах данных, но не о том, как их создать, создать СУБД, а как правило, о том как эксплуатировать готовую (зарубежную) БД.
Преп. состав не готов научить специалистов IТ-шников создавать отечественные СУБД, ОS, языки программирования, я уж не говорю о БИС, СБИС, заказных БИС. Здесь, по-видимому, поезд ушел давно и надолго. Так что напрасно надуваются у некоторых щеки от гордости (читай снобизма) это видно по комментариям к чужим публикациям, покажите сами, что можете, а не балуйтесь никчемными переводами и перепевками чужого ради предмета гордости — «рейтинга» и «кармы». Сказывается не только отсутствие креатива, но простой образованности и воспитания.
Вторая предметная область неразрывно, связанная с отношениями, — принятие решений. Каждый из нас постоянно занят этим. Мы без решения осознанного или неосознанного пальцем не пошевелим. Мало кто понимает, а еще меньше пишет о решениях. В основе решения любого ЛПР (лица, принимающего решение) лежит предпочтение альтернатив. А моделью предпочтения как раз и является такой тип отношений, который назван «пространством отношений предпочтения». Но кто их изучает. Когда я пришел к «специалисту» по отношениям с вопросом о количестве отношений каждого типа, он не зная ответа, «убил» встречным вопросом, а зачем это Вам?
Понятие отношения
Думаю, что термин отношение знаком каждому читателю, но просьба дать определение поставит большинство в тупик. Причин для этого много. Они чаще всего в преподавателях, которые, если и использовали отношения в процессе преподавания, внимания на этом термине не заостряли, запоминающихся примеров, по-видимому, не приводили.
В моей памяти есть несколько на всю жизнь запомнившихся примеров. Об отображениях и об отношениях. Расскажу вначале об отображениях. Имеется два ведерка с краской. В одном белая в другом — черная. И есть коробка с кубиками (очень много). Грани имеют рельефные номера. Сколькими способами можно раскрасить грани кубиков в два цвета? Ответ неожиданный — столькими, сколько 6-разрядных двоичных чисел, или 2 6 = 64. Поясню подробнее ф: 2→6 отображаются 2 объекта в 6. Каждая строчка таблицы- дискретное отображение фi.
Построим таблицу с 6 колонками и краскам сопоставим число белая — нуль, черная — единица, а граням кубика колонки. Начинаем с того, что все 6 граней белые — это 6-мерный нулевой вектор. Вторая строчка одна грань черная, т. е. младший разряд заполнен 1. и так до исчерпания 6-разрядных двоичных чисел. Кубики ставим в общий длинный ряд. У каждого из них как бы появился номер от 0 до 63.
Теперь отображение наоборот. Пачка листов бумаги (много) и 6 красок (фломастеры).
Фломастерами разного цвета надо пометить обе стороны бумажных листов. Сколько листов потребуется. Ответ f: 6 → 2 или 6 2 =36. Речь идет о произвольных отображениях.
Получили 9 упорядоченных пар элементов из А×А, в паре первый элемент из первого сомножителя, второй — из второго. Теперь попробуем получить все подмножества из декартова квадрата А×А. Вначале простенький пример.
Подмножества будут содержать из А×А разное количество элементов (пар): одну, две, три и так до всех 9 пар, включаем в этот список и пустое множество (Ø). Сколько же получилось подмножеств? Много, а именно 2 9 = 512 элементов.
Определение. Любое подмножество декартова произведения (у нас квадрата) множества называется отношением. Заметим, в произведении используется одно и то же множество. Если множества разные, возникает не отношение, а соответствие.
Символ отношения ставится слева от элементов R(x, y) или между ними x R y; х, у є А.
Определение Множество всех подмножеств множества А называется булеаном. Наш булеан состоит из 2 |А×А| элементов, здесь|А×А| — мощность множества.
Отношения можно задавать в разном представлении над А=
Рисунок 1.2. а)Матрица 4×4 бинарного отношения б) нумерация клеток Матрицы
Здесь используются номера клеток, заполненные единицами на рис. 1б)
— Векторное представление. Двоичный вектор для представления бинарного отношения формируется из элементов <0,1>следующим образом:
Рассмотренный пример задания отношения в векторной форме будет иметь следующий вид:
— Представление графом. Поставим в соответствие элементам множества
А =
Проведем в графе дугу от (xi) к (xj) тогда и только тогда, когда пара (xi,xj) є R (при i = j дуга (xi,xi) превращается в петлю при вершине (xi). Пример (рис. 1а) представления бинарного отношения A[4×4] графом изображен на рис.2.2.
Рисунок 2.2. Представление отношения ориентированным графом
Каталог бинарных отношений (n = 3)
Большое видится на расстоянии. Чтобы почувствовать отношения их разнообразие, мощность мне пришлось вручную создать каталог бинарных отношений над множеством из 3-х элементов, который включил все (боле 500 отношений) отношения. После этого «дошло» или «зашло»об отношениях.
Очевидно, что в каталог войдут 2 3×3 = 2 9 отношений, и каждое из них снабдим набором присущих им свойств. Ниже (табл. 3) приводится полный список всех 512 отношений над множеством А, |A| = 3, из трех элементов. Приводятся также результаты подсчета количества отношений (табл. 2), представленных сочетаниями номеров клеток декартова квадрата 3×3, различных подклассов для различных значений мощности множества-носителя (n = 3). Для каждого отношения указаны его основные свойства и принадлежность типу (табл. 3). Сокращения, используемые в каталоге раскрываются таблицей 2
Таблица 2. Количественные характеристики каталога при разных n
Сущность производимых операций с отношениями и их технику удобно пояснять на примерах, которые особенно просты и понятны для бинарных отношений. В операциях могут участвовать, два и/или более отношений. Операции, выполняемые над отдельными отношениями – унарные операции. Например, операции обращения (получение обратного) отношения, взятие дополнения, сужение (ограничение) отношения. Как пользоваться каталогом поясним примером примером.
Пример 2. Рассмотрим строку Nпр =14 таблицы каталога. Она имеет вид
Первые 9 символов строки (справа от равенства) — это двоичный вектор, соответствующий сочетанию из 9 по 2, а именно, номер первой клетки (отсчет слева направо) номер 5-й клетки матрицы бинарного отношения, т.е. элементы а1а1= а2а2 =1. Это сочетание имеет порядковый номер Ncч = 4 и сквозной номер Nпр = 14 в списке всех отношений. В остальных позициях этой строки стоят либо нули, либо единицы. Нули свидетельствуют об отсутствии свойства, соответствующего названию колонки нуля, а единицы – наличие такого свойства у рассматриваемого отношения.
Свойства и количественные характеристики отношений
Рассмотрим наиболее важные свойства отношений, которые позволят в дальнейшем выделить типы (классы) отношений, применяющиеся в реляционных базах данных в теории выбора и принятия решений и других приложениях. Далее будем обозначать отношение символом [R,Ω]. R- имя отношения, Ω — множество-носитель отношения.
1. Рефлексивность. Отношение [R,Ω] называется рефлексивным, если каждый элемент множества находится в отношении R сам с собой (рис. 2.3). Граф рефлексивного БО имеет во всех вершинах петли (дуги), а матрица отношения содержит (Е) единичную главную диагональ.
Рисунок 2.3. Рефлексивное отношение
2. Антирефлексивность. Отношение [R,Ω] называется антирефлексивным, если ни один элемент из множества не находится в отношении R сам с собой (рис. 2.4). Антирефлексивные отношения называют строгими.
Рисунок 2.4. Антирефлексивное отношение
3. Частичная рефлексивность. Отношение [R,Ω] называется частично
рефлексивным, если один или более элементов из множества не находится в отношении R сам с собой (рис. 2.5).
4. Симметричность. Отношение [R,Ω] называется симметричным, если вместе с упорядоченной парой (х, у) отношение содержит и упорядоченную пару (у, х) (рис. 2.6).
7. Транзитивность. Отношение [R,Ω] называется транзитивным, если для всяких упорядоченных пар (х, у),(у, z) є R, в отношении R найдется упорядоченная пара (х, z) є R или если R×R⊆R (рис. 2.9).
8. Цикличность. Отношение [R,Ω] называется циклическим, если для его элементов
9. Ацикличность. Отношения, в которых отсутствуют контуры называются, ациклическими. Для ациклических отношений выполняется соотношение R k ∩R = Ø для любого k > 1 (рис. 2.11).
10. Полнота (связность). Отношение [R,Ω] называется полным (связным), если для любых двух элементов (у, z) є Ω один из них находится в отношении с другим (рис 2.12). Линейность. Линейные отношения – это минимально полные отношения.
Рисунок 2.12. Линейное отношение
Итак, нами установлено, что отношения, как математические объекты, обладают определенными свойствами, определение которых приведены ранее. В следующем пункте рассмотрим существо и проявление некоторых свойств:
Количественные соотношения таких дискретных пространств представляют большой как
теоретический, так и практический интерес. Ниже рассматриваются некоторые аспекты количественных характеристик, связанных со свойствами отношений разных типов.
Операции над отношениями
Как и большинстве систем счисления с отношениями выполняются операции:
Выше было введено понятие бинарного отношения, как подмножества упорядоченных пар декартова произведения множеств, а также были рассмотрены свойства отношений. Кроме того, были упомянуты бинарные отношения и матричное представление отношений. Рассмотрим теперь понятие отношения более подробно, кроме того, рассмотрим основные операции бинарных отношений, наиболее важные из всего их множества для отношений.
Для них должны выполняться следующие условия:
Унарные операции над отношениями
9. Двойственное отношение (P d ) к отношению Р – отношение, образованное всеми теми парами, которые принадлежат универсальному отношению и не принадлежат обратному отношению (дополнение к обратному):
Двойственное и обратное отношения в совокупности содержат все пары декартова произведения A×A и не имеют общих пар, они также как и отношения Р и P образуют разбиение A×A
Сужение (РА1). Отношение [R1, A1] называется сужением отношения [R, A] на множество Ω1, если Ω1⊆ Ω и R1=R∩Ω1×Ω1. Отношение РА1 на множестве А1 ⊆ А – отношение РА1 на множестве А1, образованное всеми теми парами, которые принадлежат отношению Р и одновременно входят в состав декартова произведения А1 × А1. Другими словами, РА1 – пересечение отношений Р и А1×А1. Пусть А1 =
Операции, требующие не менее двух отношений – n-арные (n-местные). В таких операциях могут участвовать отношения только одинаковой арности. Примеры таких операций: пересечение, объединение, разность, симметрическая разность отношений и некоторые другие. Если в операции используется более чем два отношения, то она выполняется последовательно для двух первых, а затем для итогового отношения и третьего и т.д.
Иначе говоря, эти операции определены для двух отношений. При операциях над отношениями предполагается, что области задания отношений (операндов и результата) совпадают, арности отношений совпадают, и результатом операции снова является отношение той же арности. В качестве примеров будем рассматривать операции над бинарными отношениями P и Q, заданными на дискретном множестве
А =
1. Пересечение (P ∩ Q) – отношение, образованное всеми теми парами элементов из А, которые входят в оба отношения, т.е. общие для P и Q,
P ∩ Q = <(ai aj) | ((ai aj) є P) & ((ai aj) є Q)>.
Матрица отношения P ∩ Q получается как булево пересечение матриц P и Q:
При отсутствии таких общих пар говорят, что пересечение отношений пусто, т.е. оно является нуль-отношением. Пересечением отношений R1 и R2 (R1∩R2 ) называется отношение, определяемое пересечением соответствующих подмножеств из А×А.
2. Объединение (PUQ). Объединением отношений R1 и R2 (R1UR2 ) называется отношение, определяемое объединением соответствующих подмножеств из А×А. Отношение, образованное всеми парами, составляющими или отношение P, или отношение Q, т.е. парами, принадлежащими хотя бы одному из отношений (связка ∨ — или объединительная)
P U Q = <(ai aj) | ((ai aj) є P) ∨ ( (ai aj) є Q)>.
Если в множестве А×А нет других пар, не вошедших в отношение PUQ, а пересечение их нулевое, то говорят, что отношения P и Q при объединении образуют полное отношение А×А, а их система – разбиение этого полного отношения. Объединение матриц отношений образуется как булева сумма матриц отношений:
3.Разность (P\Q) – отношение, образованное теми парами из Р, которые не входят в отношение Q
P\Q = <(ai aj) | ((ai aj) є P)&((ai aj)∉Q)>.
Разность для отношений в матричном представлении имеет вид
4. Умножение отношений. Упорядоченные пары, образующие отношения могут содержать одинаковые элементы, а могут и не содержать. Среди пар, имеющих в своем составе одинаковые элементы, выделим такие упорядоченные пары, которые назовем смежными (примыкающими) и которые имеют во второй паре 1-й элемент, а в первой паре 2-й элемент один и тот же. Определим произведение смежных пар как упорядоченную пару:
( ai ak)∙( ak aj) => (ai aj).
В терминах теории графов сказанное означает, что смежные пары образуют маршрут из точки (ai) в точку (aj) транзитом через точку (ak), состоящий из 2-х смежных дуг. Произведение этих дуг – третья дуга из точки (ai) в точку (aj), реализующая переход между крайними точками маршрута в том же направлении, минуя промежуточную точку (ak). Говорят, что дуга (ai aj) замыкает эти точки напрямую.
5. Симметрическая разность (P∆Q) – отношение, образованное теми парами, которые входят в объединение PUQ, но не входят в пересечение P∩Q. Другая форма определения объясняет название операции: P∆Q образовано теми упорядоченными парами, которые являются объединением разностей P\Q и Q\P. Таким образом, выражение для симметрической разности записывается двумя разными способами:
P∆ Q = (PU Q)\(P ∩ Q) = (P\Q)U (Q\P).
Матрица симметрической разности имеет вид:
Из последней записи следует, что операция симметрической разности допускает перестановку операндов, т. е. коммутативна.
5. Композиция или произведение (P∙Q) – отношение, образованное всеми парами, для которых выполняется:
P∙Q = <(ai aj)|((ai ak) є P) & ((ak aj) є Q)>.
Другими словами, каждая упорядоченная пара в результирующем отношении есть результат умножения смежных пар, из которых 1-я пара принадлежит первому сомножителю-отношению, 2-я – второму сомножителю-отношению. Операция композиции не коммутативна.
Композиция (Р◦Q) на множестве М – отношение R, заданное на том же множестве М, которое содержит пару (x, y), когда существует Z є M такое, что (x, z) є P и (z, y) є Q.
При матричном представлении отношений матрица композиции отношений равна булеву произведению матриц исходных отношений:
Частный случай композиции отношений – квадрат отношения.
Можно показать, используя индукцию, что n-я степень отношения определяется рекуррентно по формуле:P n =P n-1 ◦Р, это означает, что пара (x,y) є P n в том случае, когда в матрице Р существует цепочка элементов: такая, что (xi, xi+1)є P, 1 Литература