что такое ошибка выборки
Выборочное наблюдение в статистике
11.2. Оценка результатов выборочного наблюдения
11.2.1. Средняя и предельная ошибки выборки. Построение доверительных границ для средней и доли
В теории выборочного наблюдения выведены формулы для определения , которые индивидуальны для разных способов отбора (повторного и бесповторного), типов используемых выборок и видов оцениваемых статистических показателей.
Например, если применяется повторная собственно случайная выборка, то определяется как:
— при оценивании среднего значения признака;
— если признак альтернативный, и оценивается доля.
— для среднего значения признака;
— для доли.
Вероятность получения именно такой величины ошибки всегда равна 0,683. На практике же предпочитают получать данные с большей вероятностью, но это приводит к возрастанию величины ошибки выборки.
Предельная ошибка выборки () равна t-кратному числу средних ошибок выборки (в теории выборки принято коэффициент t называть коэффициентом доверия):
.
Уровень предельной ошибки выборки зависит от следующих факторов:
Приведем некоторые значения коэффициента доверия из таблицы нормального распределения.
Значение доверительной вероятности P | 0,683 | 0,954 | 0,997 |
---|---|---|---|
Значение коэффициента доверия t | 1,0 | 2,0 | 3,0 |
Доверительный интервал для среднего значения признака и для доли в генеральной совокупности устанавливается следующим образом:
Итак, определение границ генеральной средней и доли состоит из следующих этапов:
Ошибки выборки при различных видах отбора
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
где Пример 11.2. Для изучения уровня фондоотдачи было проведено выборочное обследование 90 предприятий из 225 методом случайной повторной выборки, в результате которого получены данные, представленные в таблице.
В рассматриваемом примере имеем 40%-ную выборку (90 : 225 = 0,4, или 40%). Определим ее предельную ошибку и границы для среднего значения признака в генеральной совокупности по шагам алгоритма:
Выборочная дисперсия изучаемого признака Для наших данных определим предельную ошибку выборки, например, с вероятностью 0,954. По таблице значений вероятности функции нормального распределения (см. выдержку из нее, приведенную в Приложении 1) находим величину коэффициента доверия t, соответствующего вероятности 0,954. При вероятности 0,954 коэффициент t равен 2. Таким образом, в 954 случаях из 1000 среднее значение фондоотдачи будет не выше 1,88 руб. и не ниже 1,74 руб. Выше была использована повторная схема случайного отбора. Посмотрим, изменятся ли результаты обследования, если предположить, что отбор осуществлялся по схеме бесповторного отбора. В этом случае расчет средней ошибки проводится по формуле Тогда при вероятности равной 0,954 величина предельной ошибки выборки составит: Доверительные границы для среднего значения признака при бесповторном случайном отборе будут иметь следующие значения: Сравнив результаты двух схем отбора, можно сделать вывод о том, что применение бесповторной случайной выборки дает более точные результаты по сравнению с применением повторного отбора при одной и той же доверительной вероятности. При этом, чем больше объем выборки, тем существеннее сужаются границы значений средней при переходе от одной схемы отбора к другой. По данным примера определим, в каких границах находится доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., в генеральной совокупности: Количество предприятий в выборке с уровнем фондоотдачи, не превышающим значения 2,0 руб., составляет 60 единиц. Тогда m = 60, n = 90, w = m/n = 60 : 90 = 0,667;
Если предположить, что была использована бесповторная схема отбора, то средняя ошибка выборки с учетом поправки на конечность совокупности составит При значении вероятности Р = 0,997 по таблице нормального распределения получаем значение для коэффициента доверия t = 3 (см. выдержку из нее, приведенную в Приложении 1): Таким образом, с вероятностью 0,997 можно утверждать, что в генеральной совокупности доля предприятий с уровнем фондоотдачи, не превышающим значения 2,0 руб., не меньше, чем 54,7%, и не больше 78,7%. Объем извлекаемых из каждой типической группы единиц зависит от принятого способа отбора; их общее количество образует необходимый объем выборки Существуют следующие два способа организации отбора внутри типической группы: пропорциональной объему типических групп и пропорциональной степени колеблемости значений признака у единиц наблюдения в группах. Рассмотрим первый из них, как наиболее часто используемый. Отбор, пропорциональный объему типических групп, предполагает, что в каждой из них будет отобрано следующее число единиц совокупности: Отбор единиц внутри групп происходит в виде случайной или механической выборки. Формулы для оценивания средней ошибки выборки для среднего и доли представлены в табл. 11.6.
Здесь Пример 11.3. В одном из московских вузов проведено выборочное обследование студентов с целью определения показателя средней посещаемости вузовской библиотеки одним студентом за семестр. Для этого была использована 5%-ная бесповторная типическая выборка, типические группы которой соответствуют номеру курса. При отборе, пропорциональном объему типических групп, получены следующие данные:
Число студентов, которое необходимо обследовать на каждом курсе, рассчитаем следующим образом: n = 2550/130*5 =128 (чел.); аналогично для других групп: Проведем необходимые расчеты. С вероятностью 0,954 находим предельную ошибку выборки: Таким образом, с вероятностью 0,954 можно утверждать, что один студент за семестр посещает вузовскую библиотеку в среднем от семи до девяти раз. Среднюю ошибку малой выборки определяют по формуле Предельная ошибка малой выборки: Пример 11.4. Предположим, что выборочное обследование восьми студентов академии показало, что на подготовку к контрольной работе по статистике они затратили следующее количество часов: 8,5; 8,0; 7,8; 9,0; 7,2; 6,2; 8,4; 6,6. Оценим выборочные средние затраты времени и построим доверительный интервал для среднего значения признака в генеральной совокупности, приняв доверительную вероятность равной 0,95. То есть с вероятностью 0,95 можно утверждать, что затраты времени студента на подготовку к контрольной работе находятся в пределах от 6,9 до 8,5 ч. 11.2.2. Определение численности выборочной совокупностиПеред непосредственным проведением выборочного наблюдения всегда решается вопрос, сколько единиц исследуемой совокупности необходимо отобрать для обследования. Формулы для определения численности выборки выводят из формул предельных ошибок выборки в соответствии со следующими исходными положениями (табл. 11.7): Кроме того, следует заранее определиться со значением доверительной вероятности, устраивающей потребителя информации, и с размером допустимой предельной ошибки выборки.
Примечание: при использовании приведенных в таблице формул рекомендуется получаемую численность выборки округлять в большую сторону для обеспечения некоторого запаса в точности. Пример 11.5. Рассчитаем, сколько из 507 промышленных предприятий следует проверить налоговой инспекции, чтобы с вероятностью 0,997 определить долю предприятий с нарушениями в уплате налогов. По данным прошлого аналогичного обследования величина среднего квадратического отклонения составила 0,15; размер ошибки выборки предполагается получить не выше, чем 0,05. При использовании повторного случайного отбора следует проверить При бесповторном случайном отборе потребуется проверить Как видим, использование бесповторного отбора позволяет проводить обследование гораздо меньшего числа объектов. Пример 11.6. Планируется провести обследование заработной платы на предприятиях отрасли методом случайного бесповторного отбора. Какова должна быть численность выборочной совокупности, если на момент обследования в отрасли число занятых составляло 100 000 чел.? Предельная ошибка выборки не должна превышать 100 руб. с вероятностью 0,954. По результатам предыдущих обследований заработной платы в отрасли известно, что среднее квадратическое отклонение составляет 500 руб. Следовательно, для решения поставленной задачи необходимо включить в выборку не менее 100 человек. Ошибка выборкиОпубликовано 19.06.2021 · Обновлено 19.06.2021 Что такое Ошибка выборки?Ошибка выборки – это статистическая ошибка, которая возникает, когда аналитик не выбирает выборку, которая представляет всю совокупность данных, а результаты, найденные в выборке, не представляют результаты, которые были бы получены для всей генеральной совокупности. Выборка – это анализ, выполняемый путем выбора ряда наблюдений из более широкой совокупности, и этот выбор может привести как к ошибкам выборки, так и к ошибкам, не связанным с выборкой. Ключевые моментыПонимание ошибок выборкиОшибка выборки – это отклонение значения выборки от истинного значения совокупности из-за того, что выборка не является репрезентативной для генеральной совокупности или каким-либо образом смещена. Даже рандомизированные выборки будут иметь некоторую ошибку выборки, поскольку это всего лишь приблизительная оценка генеральной совокупности, из которой она взята. Ошибки выборки могут быть устранены при увеличении размера выборки, а также путем обеспечения того, чтобы выборка адекватно представляла всю генеральную совокупность. Предположим, например, что компания XYZ предоставляет услугу на основе подписки, которая позволяет потребителям вносить ежемесячную плату за потоковую передачу видео и других программ через Интернет. Фирма хочет опросить домовладельцев, которые смотрят по крайней мере 10 часов программ в Интернете каждую неделю и платят за существующую службу потокового видео. XYZ хочет определить, какой процент населения заинтересован в более дешевой подписке. Если XYZ не продумает тщательно процесс выборки, могут возникнуть несколько типов ошибок выборки. Примеры ошибок выборкиОшибка спецификации совокупности означает, что XYZ не понимает конкретных типов потребителей, которые должны быть включены в выборку. Если, например, XYZ создает группу людей в возрасте от 15 до 25 лет, многие из этих потребителей не принимают решение о покупке услуги потокового видео, потому что они не работают полный рабочий день. С другой стороны, если XYZ соберет выборку работающих взрослых, которые принимают решения о покупке, потребители в этой группе могут не смотреть 10 часов видеопрограмм каждую неделю. Ошибка выбора также приводит к искажению результатов выборки, и типичным примером является опрос, в котором участвует лишь небольшая часть людей, которые сразу же откликаются. Если XYZ попытается связаться с потребителями, которые изначально не ответили, результаты опроса могут измениться. Кроме того, если XYZ исключает потребителей, которые не отвечают сразу, результаты выборки могут не отражать предпочтения всего населения. Учет ошибок, не связанных с выборкойПростыми словами о выборкеПривет. Я UX-исследователь в СКБ Контур. Чаще всего в работе я использую качественные методы исследований — глубинные интервью и модерируемые юзабилити-тестирования. Количественные исследования без подготовленной инфраструктуры со стороны разработки более ресурсозатратные, поэтому самостоятельно их провести сложнее. Но самое сложное для меня в проведении количественного исследования — это выборка. Мне ближе гуманитарная сторона исследовательской работы, поэтому разобраться в выборке сложнее, чем в техниках ведения интервью. Если у тебя такая же проблема, эта статья будет полезна. Ниже я попробовала просто рассказать о выборке, репрезентативности и методах отбора при проведении количественного исследования. Выборка и репрезентативностьОпрос — это количественный метод, направленный на получение точной, объективной и статистически значимой информации. Если качественные методы помогают в формулировке гипотез, то количественные — масштабируют и проверяют эти гипотезы на всей целевой аудитории. Поэтому важно проводить отбор респондентов таким образом, чтобы выборочная совокупность отражала состав всей генеральной совокупности. В социологии есть термин — единица наблюдения. Это может быть один человек, группа или сообщество в зависимости от целей исследования. Генеральная совокупность — это вся совокупность единиц наблюдения, имеющих отношение к теме исследования.
Выборочная совокупность — часть генеральной совокупности, которую вы изучаете в ходе исследования с помощью разработанных вами инструментов (анкета, гайд и прочее).
Выборка должна быть репрезентативной, иначе результаты количественного исследования будут сомнительными. Репрезентативность — обеспечение в выборочной совокупности наличия всех видов единиц генеральной совокупности в достаточном количестве. Репрезентативность имеет качественное и количественное выражение. Качественная репрезентация обязывает включить в выборку все возможные варианты респондентов, особенно, если какой-то признак влияет на опыт использования сервиса.
На практике, особенно в онлайн-опросах, качественная репрезентативность может страдать. Ею можно пренебречь, если вы уверены, что на проверку гипотезы не повлияет принадлежность респондента к той или иной группе. Онлайн-опросы предполагают стихийную выборку и поэтому предусмотреть присутствие всех типов респондентов сложно. Про стихийную выборку подробнее я расскажу ниже. Чтобы соблюсти количественную репрезентацию нужно обеспечить достаточное число респондентов, в том числе по каждой группе внутри выборки.
И, конечно, для того, чтобы масштабировать результаты опроса на всю генеральную совокупность (в нашем примере — на всех пользователей), нужно в целом рассчитать количество человек, которое ты планируешь пригласить для прохождения опроса. Что значит «достаточное» количество человек для выборки.
Но увеличивать до бесконечности число опрашиваемых нет смысла. После определенного количества респондентов ошибка выборки остановится на одном уровне. Ошибка выборки — разность между характеристиками выборочной и генеральной совокупности. Это отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности. Где-то после 400 респондентов ошибка выборки не меняется. Поэтому обычно в опросах выборочная совокупность составляет 300–400 человек. При таком значении ты можешь уверенно переносить результаты исследования на всю аудиторию при соблюдении качественной репрезентации и корректно составленной анкеты. Если генеральная совокупность небольшая, то и выборочная совокупность будет меньше стандартных 300–400 респондентов. Если хочешь разобраться с формулой расчета выборки подробнее про нее можно узнать здесь. Также ты можешь провести сплошной опрос. При сплошном опросе ты опрашиваешь всю генеральную совокупность.
На практике требованиями количественной репрезентации иногда пренебрегают в силу нехватки ресурсов на обзвон (если это телефонный опрос) или времени на сбор ответов. Или если опрос проводят для сбора гипотез, а не для принятия конечного решения. Здесь важно понимать, какое решение должно быть принято на основе исследования. Если это важный продуктовый или бизнес-вопрос, то лучше потратить время и деньги на проверку гипотезы с репрезентативной выборкой, чтобы не получить неверные выводы. А если, это, к примеру, опрос для сбора отклика по новой фиче, то можно остановиться на 30–60 респондентах. Основные выводы ты сделаешь, а пользователи по мере работы в сервисе расскажут о том, что ты мог пропустить. Методы отбораВ количественном исследовании по сравнению с качественным не важно кто перед тобой, потому что все выводы строятся по совокупности ответов респондентов и материал собирается в обезличенном виде. Поэтому в идеале в выборку респонденты должны попадать случайным образом, чтобы сделать результаты максимально свободными от искажений. Чтобы этого достичь можно использовать один из методов формирования выборки. Случайные выборкиОни предполагают, что в выборке каждый элемент генеральной совокупности имеет заранее заданную вероятность быть отобранным в исследование. Простая случайная выборка. Сначала нужно присвоить каждому потенциальному респонденту идентификационный номер. Дальше с помощью генератора случайных чисел определить номера, которые будут включены в выборку для опроса. Механическая выборка. Как и в простой выборке пользователям присваивается порядковый номер. Только отбор происходит не с помощью генератора случайных чисел, а с шагом равным n. Например, каждый сотый. Стратифицированная выборка. Для такой выборки нужно поделить генеральную совокупность на сегменты или страты. После чего респонденты внутри каждой группы отбираются случайным образом. Из каждого сегмента выделяют пользователей пропорционально их доле в генеральной совокупности. Кластерный отбор или гнездовая выборка. Группа потенциальных респондентов отбирается случайным образом из всей генеральной совокупности. Далее внутри этой группы опрашиваются все пользователи. Например, можно опросить всех пользователей, которые зарегистрировались в сервисе в прошлом квартале. При таком отборе риск искажений выше и важно учитывать внешние и внутренние факторы. Может быть в прошлом квартале в жизни пользователей произошло что-то важное, что повлияло на их желание воспользоваться сервисом. Тогда эта группа будет сильно отличаться от генеральной совокупности. Неслучайные выборкиОбычно такие методы отбора применяют, если нет возможности или ресурсов для формирования случайной выборки. Например, у тебя мало времени на опрос или нет данных о генеральной совокупности или респонденты труднодоступны. Квотная выборка. Такой метод можно применять, если у вас есть знания о составе генеральной совокупности. Например, вы знаете, как ваши пользователи распределяются в разрезе по должности, отрасли компании, возрасту и так далее. Тогда можно пропорционально этим долям сформировать выборку: в каждом разрезе выбрать такое число респондентов, которое будет отображать статистику по всей аудитории. Стихийная выборка. Это метод без особых правил. В опрос попадают все, кто захочет пройти опрос. Такая выборка типична для онлайн-опросов, размещенных в свободном доступе. «Снежный ком». Тоже достаточно популярная и простая методика. Каждого респондента просят порекомендовать нового среди его друзей, коллег и знакомых, которые подходили бы под параметры исследования. Такая выборка часто применяется когда самостоятельно найти интересующих респондентов затруднительно. Например, пользователи, занимающие высокую должность или с высоким доходом. «Типичный представитель». Из генеральной совокупности отбираются респонденты с типичными признаками целевой аудитории. Только определить, что взять за такой признак, обычно сложно. Отдельно стоит сказать про многоступенчатые выборки. На практике чаще всего (иногда интуитивно) исследователи используют как раз многоступенчатый метод. Такой отбор предполагает наличие двух или более этапов формирования выборки. Проще говоря, это микс нескольких методов отбора.
Проводя количественное исследование, не забывай о репрезентативности и продумывай подходящий метод отбора респондентов. Хорошая подготовка — половина успеха.
|