что такое it14 2 на чертеже
Что такое it14 2 на чертеже
Основные нормы взаимозаменяемости
ЕДИНАЯ СИСТЕМА ДОПУСКОВ И ПОСАДОК
Общие положения, ряды допусков и основных отклонений
Basic norms of interchangeability. Unified system of tolerances and fits. General, series of tolerances and fundamental deviations
Дата введения 1990-01-01
1. РАЗРАБОТАН И ВНЕСЕН Министерством станкостроительной и инструментальной промышленности СССР
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 11.04.89 N 983
3. ВЗАМЕН ГОСТ 25346-82
4. Стандарт полностью соответствует СТ СЭВ 145-88
5. Стандарт соответствует международному стандарту ИСО 286-1-88*
7. ИЗДАНИЕ с Поправками (ИУС 1-91, 5-92)
Настоящий стандарт распространяется на гладкие элементы деталей, цилиндрические и ограниченные параллельными плоскостями, а также на образованные ими посадки и устанавливает термины, определения и условные обозначения, допуски и основные отклонения системы допусков и посадок для размеров до 3150 мм и любых линейных размеров, если они не установлены другими стандартами.
1. ОСНОВНЫЕ ПОЛОЖЕНИЯ
1.1. Термины и определения
Примечание. В дальнейшем в стандарте под термином «допуск» понимают «стандартный допуск».
Примечание. Применявшийся ранее термин «проходной предел» использовать не рекомендуется.
Примечание. Применявшийся ранее термин «непроходной предел» использовать не рекомендуется.
Примечание. Натяг можно определять как отрицательную разность между размерами отверстия и вала.
Что такое it14 2 на чертеже
ГОСТ 30893.1-2002
(ИСО 2768-1-89)
Основные нормы взаимозаменяемости
Предельные отклонения линейных и угловых размеров с неуказанными допусками
Basic norms of interchangeability. General tolerances. Limit deviations for linear and angular dimensions without tolerance indications
Дата введения 2004-01-01
Предисловие
1 РАЗРАБОТАН Научно-исследовательским и конструкторским институтом средств измерения в машиностроении (ОАО «НИИизмерения»)
2 ВНЕСЕН Госстандартом России
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 22 от 6 ноября 2002 г.)
За принятие проголосовали:
Наименование национального органа по стандартизации
Госстандарт Республики Беларусь
Госстандарт Республики Казахстан
4 Настоящий стандарт представляет собой идентичный текст международного стандарта ИСО 2768-1-1989* «Общие допуски. Часть 1. Допуски линейных и угловых размеров без индивидуально указанных допусков» и содержит дополнительные требования, отражающие потребности экономики страны
5 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 23 июня 2003 г. N 22-ст межгосударственный стандарт ГОСТ 30893.1-2002 (ИСО 2768-1-89) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2004 г.
1 Область применения
Настоящий стандарт распространяется на металлические детали, изготовленные резанием, или детали, изготовленные формообразованием из листового металла, и устанавливает общие допуски для линейных и угловых размеров, если эти допуски не указаны непосредственно у номинальных размеров.
Общие допуски по настоящему стандарту могут применяться также для неметаллических деталей и деталей, обрабатываемых способами, не относящимися к обработке резанием или формообразованию из листового материала, если они не предусмотрены другими стандартами и пригодны для указанных деталей.
Дополнительные требования, отражающие потребности экономики страны, выделены курсивом (см. таблицу 1 и приложение А).
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 2.307-68 Единая система конструкторской документации. Нанесение размеров и предельных отклонений
ГОСТ 25346-89 Основные нормы взаимозаменяемости. ЕСДП. Общие положения, ряды допусков и основных отклонений
ГОСТ 25348-81 Основные нормы взаимозаменяемости. ЕСДП. Ряды допусков, основных отклонений и поля допусков для размеров свыше 3150 мм
ГОСТ 30893.2-2002 (ИСО 2768-2-89) Основные нормы взаимозаменяемости. Общие допуски. Допуски формы и расположения поверхностей, не указанные индивидуально
В настоящем стандарте применяют следующие термины с соответствующими определениями:
3.1 общий допуск размера: Предельные отклонения (допуски) линейных или угловых размеров, указываемые на чертеже или в других технических документах общей записью и применяемые в тех случаях, когда предельные отклонения (допуски) не указаны индивидуально у соответствующих номинальных размеров.
4 Основные положения
4.1 Общие допуски по настоящему стандарту применяют для следующих размеров с неуказанными индивидуально предельными отклонениями:
— линейных размеров (например, наружных, внутренних, диаметров, радиусов, расстояний, размеров уступов, размеров притупленных кромок: наружных радиусов закругления и размеров фасок);
— угловых размеров, включая угловые размеры, обычно не указываемые, т.е. прямые углы (90°), если нет ссылки на ГОСТ 30893.2, или углы правильных многоугольников;
— линейных и угловых размеров, получаемых при обработке деталей в сборе.
4.2 Общие допуски по настоящему стандарту не применяют для:
— размеров, к которым относятся ссылки на общие допуски по другим стандартам;
— номинальных (теоретически точных) размеров, заключенных в прямоугольные рамки.
4.3 Общие допуски по настоящему стандарту применяются, если на чертеже или в другой технической документации имеется ссылка на настоящий стандарт в соответствии с разделом 6.
Если, кроме указанной ссылки, имеется ссылка на другие стандарты, устанавливающие общие допуски для других способов обработки, например литья, то для размеров с неуказанными предельными отклонениями между обработанными и необработанными поверхностями, например в отливках или поковках, применяется больший из двух общих допусков.
Принципы назначения общих допусков размеров изложены в приложении Б.
4.4 Общие допуски установлены по четырем классам точности. При выборе класса точности следует учитывать обычную точность соответствующего производства. Если для отдельных размеров необходимы меньшие допуски или допустимы и экономически выгодны большие допуски, то соответствующие предельные отклонения необходимо указать непосредственно у размера согласно ГОСТ 2.307.
4.5 Общие допуски линейных размеров ограничивают только местные размеры элемента, т.е. размеры, измеренные по двухточечной схеме в любом сечении, и не ограничивают все отклонения формы элемента.
4.6 Общие допуски угловых размеров ограничивают угол между прилегающими плоскостями или прямыми, образующими стороны рассматриваемого угла, и не ограничивают отклонений формы элементов, образующих стороны угла.
5 Предельные отклонения линейных и угловых размеров
5.1 Предельные отклонения линейных размеров, кроме размеров притупленных кромок (наружных радиусов скругления и высот фасок), по классам точности общих допусков приведены в таблице 1.
Размеры в миллиметрах
Предельные отклонения для интервалов номинальных размеров
Допуски и посадки. Условные обозначения
Квалитеты обозначаются порядковыми номерами, например 01, 7, 14
Допуски по квалитетам обозначаются сочетанием прописных букв IT с порядковым номером квалитета, например IT01, IT7, IT14
Основные отклонения обозначаются буквами латинского алфавита, прописными для отверстий (А … ZC) и строчными для валов (а … zc)
Поле допуска обозначается сочетанием буквы (букв) основного отклонения и порядкового номера квалитета
Например: g6, js7, H7, Н11.
Обозначение поля допуска указывается после номинального размера элемента.
Например: 40g6, 40H7, 40Н11.
В обоснованных случаях допускается обозначать поле допуска с
основным отклонением Н символом + IT,
с основным отклонением h — символом — IT,
с отклонениями js или JS — символом ± IТ/2.
Например: + IT14, — IT14, ± IT 14/2
Посадка обозначается дробью, в числителе которой указывается обозначение поля допуска отверстия, а в знаменателе — обозначение поля допуска вала
Например: H7/g6
Обозначение посадки указывается после номинального размера посадки.
Например: 40H7/g6
Основные таблицы допусков и посадок
Основные термины и определения
  Государственные стандарты (ГОСТ 25346-89, ГОСТ 25347-82, ГОСТ 25348-89) заменили систему допусков и посадок ОСТ, которая действовала до января 1980 года.
  Термины приведены согласно ГОСТ 25346-89 «Основные нормы взаимозаменяемости. Единая система допусков и посадок».
СХЕМА ОСНОВНЫХ ПОЛЕЙ ДОПУСКОВ
Назначение посадок. Посадки выбирают в зависимости от назначения и условий работы оборудования и механизмов, их точности, условий сборки. При этом необходимо учитывать и возможность достижения точности при различных методах обработки изделия. В первую очередь должны применяться предпочтительные посадки. В основном применяют посадки в системе отверстия. Посадки системы вала целесообразны при использовании некоторых стандартных деталей (например, подшипников качения) и в случаях применения вала постоянного диаметра по всей длине для установки на него нескольких деталей с различными посадками.
Допуски отверстия и вала в посадке не должны отличаться более чем на 1-2 квалитета. Больший допуск, как правило, назначают для отверстия. Зазоры и натяги следует рассчитывать для большинства типов соединений, в особенности для посадок с натягом, подшипников жидкостного трения и других посадок. Во многих случаях посадки могут назначаться по аналогии с ранее спроектированными изделиями, сходными по условиям работы.
Примеры применения посадок, относящиеся главным образом к предпочтительным посадкам в системе отверстия при размерах 1-500 мм.
Посадки с зазором. Сочетание отверстия Н с валом h (скользящие посадки) применяют главным образом в неподвижных соединениях при необходимости частой разборки (сменные детали), если требуется легко передвигать или поворачивать детали одну относительно другой при настройке или регулировании, для центрирования неподвижно скрепляемых деталей.
Посадку H7/h6 применяют:
— для сменных зубчатых колес в станках;
— в соединениях с короткими рабочими ходами, например для хвостовиков пружинных клапанов в направляющих втулках (применима также посадка H7/g6);
— для соединения деталей, которые должны легко передвигаться при затяжке;
— для точного направления при возвратно-поступательных перемещениях (поршневой шток в направляющих втулках насосов высокого давления);
— для центрирования корпусов под подшипники качения в оборудовании и различных машинах.
Посадку H8/h7 используют для центрирующих поверхностей при пониженных требованиях к соосности.
Посадки H8/h8, H9/h8, H9/h9 применяют для неподвижно закрепляемых деталей при невысоких требованиях к точности механизмов, небольших нагрузках и необходимости обеспечить легкую сборку (зубчатые колеса,муфты, шкивы и другие детали, соединяющиеся с валом шпонкой; корпуса подшипников качения, центрирование фланцевых соединений), а также в подвижных соединениях при медленных или редких поступательных и вращательных перемещениях.
Посадку H11/h11 используют для относительно грубо центрированных неподвижных соединений (центрирование фланцевых крышек, фиксация накладных кондукторов), для неответственных шарниров.
Посадка H7/g6 характеризуется минимальной по сравнению с остальными величиной гарантированного зазора. Применяют в подвижных соединениях для обеспечения герметичности (например, золотник во втулке пневматической сверлильной машины), точного направления или при коротких ходах (клапаны в клапанной коробке) и др. В особо точных механизмахприменяют посадки H6/g5 и даже H5/g4.
Посадки Н7/е7, Н7/е8, Н8/е8 и Н8/е9 применяют в подшипниках при высокой частоте вращения (в электродвигателях, в механизме передач двигателя внутреннего сгорания), при разнесенных опорах или большой длине сопряжения, например, для блока зубчатых колес в станках.
Посадка H11/d11 применяется для подвижных соединений, работающих в условиях пыли и грязи (узлы сельскохозяйственных машин, железнодорожных вагонов), в шарнирных соединениях тяг, рычагов и т. п., для центрирования крышек паровых цилиндров с уплотнением стыка кольцевыми прокладками.
Переходные посадки. Предназначены для неподвижных соединений деталей, подвергающихся при ремонтах или по условиям эксплуатации сборке и разборке. Взаимная неподвижность деталей обеспечивается шпонками, штифтами, нажимными винтами и т.п. Менее тугие посадки назначают при необходимости в частых разборках соединения, при неудобствах требуется высокая точность центрирования, при ударных нагрузках и вибрациях.
Посадка Н7/п6 (типа глухой) дает наиболее прочные соединения. Примеры применения:
— для зубчатых колес, муфт, кривошипов и других деталей при больших нагрузках, ударах или вибрациях в соединениях, разбираемых обычно только при капитальном ремонте;
— посадка установочных колец на валах малых и средних электромашин; в) посадка кондукторных втулок, установочных пальцев, штифтов.
Посадка Н7/к6 (типа напряженной) в среднем дает незначительный зазор (1-5 мкм) и обеспечивает хорошее центрирование, не требуя значительных усилий для сборки и разборки. Применяется чаще других переходных посадок: для посадки шкивов, зубчатых колес, муфт, маховиков (на шпонках), втулок подшипников.
Посадка H7/js6 (типа плотной) имеет большие средние зазоры, чем предыдущая, и применяется взамен ее при необходимости облегчить сборку.
Посадку Н7/р6 применяют при сравнительно небольших нагрузках (например, посадка на вал уплотнительного кольца, фиксирующего положение внутреннего кольца подшипника у крановых и тяговых двигателей).
Посадки Н7/г6, H7/s6, H8/s7 используют в соединениях без крепежных деталей при небольших нагрузках (например, втулка в головке шатуна пневматического двигателя) и с крепежными деталями при больших нагрузках (посадка на шпонке зубчатых колес и муфт в прокатных станах, нефтебуровом оборудовании и др.).
Посадки Н7/u7 и Н8/u8 применяют в соединениях без крепежных деталей при значительных нагрузках, в том числе знакопеременных (например, соединение пальца с эксцентриком в режущем аппарате уборочных сельскохозяйственных машин); с крепежными деталями при очень больших нагрузках (посадка крупных муфт в приводах прокатных станов), при небольших нагрузках, но малой длине сопряжения (седло клапана в головке блока цилиндров грузового автомобиля, втулка в рычаге очистки зерноуборочного комбайна).
Посадки с натягом высокой точности Н6/р5, Н6/г5, H6/s5 применяют относительно редко и в соединениях, особо чувствительных к колебаниям натягов, например посадка двухступенчатой втулки на вал якоря тягового электродвигателя.
Допуски по 12-18-му квалитетам характеризуют несопрягаемые или сопрягаемые размеры относительно низкой точности. Многократно повторяющиеся предельные отклонения в этих квалитетах разрешается не указывать у размеров, а оговаривать общей записью в технических требованиях.
  ЕСДП рекомендует применять преимущественно посадки в системе отверстия (основное отверстие Н) и в системе вала (основной вал h).
РЕКОМЕНДУЕМЫЕ ПОСАДКИ В СИСТЕМЕ ОТВЕРСТИЯ
при размерах от 1 до 500 мм
  Предпочтительные посадки помещены в рамку.
ПОЛЯ ДОПУСКОВ В ПОСАДКАХ С ЗАЗОРОМ И ПЕРЕХОДНЫХ
ПОЛЯ ДОПУСКОВ В ПОСАДКАХ С НАТЯГОМ
  Электронная таблица допусков отверстий и валов с указанием полей по старой системе ОСТ и по ЕСДП.
  Полная таблица допусков и посадок гладких соединений в системах отверстия и вала, с указанием полей допусков по старой системе ОСТ и по ЕСДП:
Таблицы Допусков углов
ГОСТ 25346-89 «Основные нормы взаимозаменяемости. Единая система допусков и посадок. Общие положения, ряды допусков и основных отклонений»
ГОСТ 8908-81 «Основные нормы взаимозаменяемости. Нормальные углы и допуски углов»
ГОСТ 24642-81 «Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Основные термины и определения»
ГОСТ 24643-81 «Основные нормы взаимозаменяемости. Допуски формы и расположения поверхностей. Числовые значения»
ГОСТ 2.308-79 «Единая система конструкторской документации. Указание на чертежах допусков формы и расположения поверхностей»
ГОСТ 14140-81 «Основные нормы взаимозаменяемости. Допуски расположения осей отверстий для крепежных деталей»
Допуски для номинальных размеров
Что же такое «допуск»?
До́пуск — разность между наибольшим и наименьшим предельными значениями параметров (размеров, массовой доли, массы), задаётся на геометрические размеры деталей, механические, физические и химические свойства. Назначается (выбирается) исходя из технологической точности или требований к изделию (продукту). Любое значение параметра, оказывающееся в заданном интервале, является допустимым.
Допуск IT = International tolerance;
Верхние и нижние отклонения, ES = Ecart Superieur, EI = Ecart Interieur,
Для отверстий большие буквы (ES, D), для валов малые (es, d).
Схема поля допуска на отверстие. По чертежу — 4 мм, предельные размеры — 4,1—4,5. В данном случае поле допуска не пересекает нулевую линию, так как оба предельных размера выше номинального.
Квалитет является мерой точности. С увеличением квалитета точность понижается (допуск увеличивается).
Допуск по квалитету обозначается буквами IT с указанием номера квалитета, например IT8 — допуск по 8-му квалитету.
— Квалитеты с 1 до 4-го используются для изготовления калибров и контркалибров.
— Квалитеты от 5-го до 12-го применяют для изготовления деталей, образующих сопряжения (ГЦС).
— Квалитеты от 13-го до 17-го используют для параметров деталей, не образующих сопряжений и не оказывающих определяющего влияния.
Для отверстия: 100H12, допуск составит +0,35 мм.
Радиус скругления (размер): R30, поле допуска (+/-)IT12/2, допуск составит (+/-)0,105 мм.
Лига технологов
49 постов 1.1K подписчиков
Правила сообщества
Если вы хотите добавить пост пожалуйста убедитесь что информация в нем правдива.
Посты не по теме,с ложной информацией и т.п. будут удаляться.
Чтобы стать участником Лиги,надо написать мне в личку или призвать в комментариях с просьбой о принятии в Лигу.
Те кто приняты в Лигу,могут помогать пикабушникам от имени Лиги технологов.
Допуск для 3802 по h12, напишите кто-то.
Как на основе фотографий нейросети создают видео
Полагаю, за последние пару лет на глаза многим попадались примеры того, как нейронные сети заставляли людей двигаться на фотографиях. Это было довольно забавно, но на таких «видео» было довольно много артефактов, да и толку от них было не особо. Но развитие на месте не стоит и нейросети научились буквально дорисовывать целые кадры на видео. К примеру как в данном случае.
Может возникнуть вопрос, к примеру, чем такая сеть отличается от той же DLSS созданной компанией NVidia и похожих сетей? Которые тоже повышают частоту кадров, делают изображение чётче и так далее. Почему бы не скормить таким нейросетям точно так же набор фотографий? Разница как раз в том, что существующие нейросети именно повышают качество изображения в реальном времени. Берут видео низкого разрешения и достраивают его до высокого. И прирост частоты происходит именно за счёт того, что видео низкого разрешения проще отобразить. Но эти сети не дорисовывают недостающие кадры.
Данная разработка была представлена учёными из Германии и её цель именно в полноценном создании промежуточных кадров. Данная сеть с нуля дорисовывает недостающие кадры, с учётом сдвига камеры и теней, с учётом изменения освещения и прочих нюансов. Она полностью «додумывает» как должны выглядеть эти кадры. На этом видео я более подробно рассказал о том, как подобная сеть работает.
Ученые разработали способ для контроля за мыслями и поведением человека
Научные специалисты из США отчитались о предварительных результатах исследований на пациентах, согласно которым некоторые мозговые функции человека, отвечающие за самоконтроль и гибкость интеллекта, можно изменить в положительную сторону. Достичь такого феноменального результата получилось благодаря объединению возможностей ИИ с таргетированной стимуляцией участков мозга.
В исследовании приняло участие 12 человек. Все они перенесли операцию на мозге по причине эпилепсии. В ходе нее пациентам были внедрены несколько сотен небольших электродов, которые были размещены в мозговых тканях для локализации области и причины возникновения судорог.
Исследователям удалось определитель участок мозга, стимуляция которого положительно сказывалась на психическом состоянии пациентов. Данная часть мозга, так называемая внутренняя капсула, ответственна за контролирование когнитивного состояния, а также переход между образами мышления, свойственный людям с психическими заболеваниями.
По словам одного из авторов работы Алика Виджа, примером может служить человек с депрессией, которого длительное время не оставляет какая-либо неприятная мысль. Так как когнитивный контроль в этом случае имеет огромное значение, поиск методов его улучшения может стать инновационным подходом в лечении подобных болезней и расстройств.
В ходе исследования были также разработаны алгоритмы, которые отслеживали возможности пациентов к когнитивному контролю, как по внешним факторам, так и по активности мозга. Когда участники менее успешно проходили тесты, ИИ определял это и повышал стимуляцию конкретных участков мозга.
По итогам научной работы были выдвинуты следующие тезисы:
— Ряд человеческих психических функций коррелирует с соответствующими заболеваниями и может быть изменен в положительную сторону при помощи таргетированной стимуляции.
— Во внутренней капсуле имеются участки, стимуляция которых наиболее положительно сказывается на конечном результате.
— Алгоритм, при котором учитывалась обратная связь, оказался на 100% более эффективным, нежели стимуляция в случайные моменты времени.
Часть пациентов, участвовавших в исследовании, имела также повышенную тревожность. В этом нет ничего удивительного, учитывая с какими трудностями им приходится сталкиваться в повседневной жизни.
После получения когнитивной стимуляции пациенты отмечали снижение тревожности. Им становилось легче не обращать внимание на постоянную тревогу и сосредотачиваться на выполнении своих дел.
Авторы научной работы утверждают, что в последствии разработанную методику можно будет применить для лечения людей с сильной и резистентной к медицинским препаратам тревожностью, депрессией, а также рядом других болезней.
А. Видж отметил, что это потенциально совершенно новый подход в лечении расстройств психики. Вместо борьбы с симптомами их разработка могла бы дать людям возможность управлять собственным разумом, обеспечив им полный контроль над ним.
В настоящее время научные специалисты готовятся к проведению клинических испытаний. Отмечается, что новое исследование может быть проведено с помощью уже существующей техники. Это означает, что в случае прохождения всех необходимых испытаний, методику удастся внедрить в практическую медицину в кратчайшие сроки.
Нейронные сети учатся распознавать Deepfake
Пару недель назад я выложил пост про нейронные сети, которые способны удалять с видео любые движущиеся объекты и всякие следы их существования. Тени от этих объектов, поднятую пыль, иногда даже почти хорошо удалялись волны на воде. И тогда, под тем постом, прямо таки развернулась дискуссия о том, как в принципе можно было бы бороться с подделкой видео. Не только с удалением объектов, но и с теми же дипфейками.
Этим вопросом и задались учёные из Германии и Италии. Ниже прикладываю презентацию их совместной научной работы.
А также, как и в прошлый раз, прикладываю своё собственное видео, с разбором того, а чём именно идёт речь в их презентации.
Итак, краткая выжимка того, о чём именно их работа. Конкретно эта группа учёных не ставила перед собой задачу разработать концептуально новую нейронную сеть, которая бы хорошо распознавала подделку на видео. Они провели комплексную сравнительную работу. Взяли набор видео, часть из которых была отредактированная нейронными сетями, а часть нет. И, с одной стороны, попросили группу людей угадать, какие именно видео являются подделками, а с другой стороны точно такую же задачу поставили перед распространёнными свёрточными нейронными сетями, основная задача которых как раз заключается в распознавании на видео и фотографиях тех или иных объектов. То есть, они брали не специализированные нейросети, а самые обычные. Те, которыми можно распознавать на видео котиков, к примеру.
По сути, самая очевидная идея в данном случае оказывается самой эффективной. Зачем придумывать сложные схемы борьбы с нейросетями, если можно просто заставить бороться с ними другие нейросети. Безусловно, данный метод не является самым надёжным. Но уже сегодня он является наиболее оправданным с позиции точности распознавания и ресурсов, которые требуются на создание такой системы. По факту, использовав созданный учёными в данной работе массив видео для обучения нейросетей, вы сможете у себя дома создать свою собственную систему распознавания дипфейков. Единственным ограничением правда будет время обучения такой сети. Если не использовать видеокарты NVidia старше 20хх серии и разработанную ими же библиотеку для машинного обучения, создание такой сети может затянуться на месяцы. Но тем не менее, такая возможность у вас всё ещё остаётся.