Что такое хеш в блокчейне
«Криптография в блокчейнах»: о хеш-функциях, ключах и цифровых подписях
Криптография — это сердце блокчейна, которое обеспечивает работу системы. Архитектура блокчейна предполагает, что доверие между участниками сети базируется на принципах математики и экономики, то есть является формализованным. Криптография также гарантирует безопасность, причем основанную на прозрачности и проверяемости всех операций, а не на традиционном для индустрии ограничении видимости системы (perimeter security).
Различные криптографические техники гарантируют неизменность журнала транзакций блокчейна, решают задачу аутентификации и контролируют доступ к сети и данным в блокчейне в целом. В сегодняшнем материале мы поговорим о хеш-функциях, ключах и цифровых подписях.
Хеш-функции
Хеширование — это процесс преобразования массива входных данных произвольной длины в (выходную) битовую строку фиксированной длины. Например, хеш-функция может принимать строку с любым количеством знаков (одна буква или целое литературное произведение), а на выходе получать строку со строго определенным числом символов (дайджест).
Хеш-функции имеются практически в любом языке программирования. Например, они используются для реализации хеш-таблиц и множеств (HashMap/HashSet в Java, dict и set в Python, Map, Set и объекты в JavaScript и так далее). Отдельная категория хеш-функций — криптографические хеш-функции. К ним предъявляются существенно более строгие требования, чем к функциям, обычно используемым в хеш-таблицах. Поэтому и применяются они в более «серьезных» случаях, например для хранения паролей. Криптографические хеш-функции вырабатываются и тщательно проверяются исследователями по всему миру.
Поэкспериментировать с хеш-функциями можно, написав простую программу на Python:
Функция hash_hex() рассчитывает представление хеша в шестнадцатеричной записи для строки. В приведенном примере используется функция SHA-256 — та же, что и в биткойне.
Хорошая хеш-функция обеспечивает защиту от коллизий (невозможно получить два одинаковых хеша при разных начальных данных) и обладает так называемым эффектом лавины, когда малейшее изменение входных данных значительно преобразует выходное значение. Эффект лавины в хеш-функции SHA-256 выглядит следующим образом:
Хеш-функции в блокчейнах гарантируют «необратимость» всей цепочки транзакций. Дело в том, что каждый новый блок транзакций ссылается на хеш предыдущего блока в реестре. Хеш самого блока зависит от всех транзакций в блоке, но вместо того, чтобы последовательно передавать транзакции хеш-функции, они собираются в одно хеш-значение при помощи двоичного дерева с хешами (дерево Меркла). Таким образом, хеши используются как замена указателям в обычных структурах данных: связанных списках и двоичных деревьях.
За счет использования хешей общее состояние блокчейна — все когда-либо выполненные транзакции и их последовательность — можно выразить одним-единственным числом: хешем самого нового блока. Поэтому свойство неизменности хеша одного блока гарантирует неизменность всего блокчейна.
Ниже приведена рекурсивная реализация дерева Меркла, используемая в биткойне, на языке Python (по ссылке вы найдете примеры работы). На вход функции подается список хешей транзакций. На каждом этапе вычисления последовательные пары хешей склеиваются при помощи хеш-функции; если хешей нечетное число, то последний дублируется. В результате остается единственный хеш, который и является конечным хеш-значением для всего списка.
Хеш-деревья имеют много применений помимо блокчейнов. Они используются в файловых системах для проверки целостности файлов, распределенных БД для быстрой синхронизации копий и в управлении ключами для надежного журналирования выдачи сертификатов. Git использует обобщение хеш-деревьев — направленные ациклические графы на основе хешей. В блокчейне использование хеш-деревьев продиктовано соображениями производительности, так как они делают возможным существование «легких клиентов», которые обрабатывают лишь малую часть транзакций из блокчейна.
Цифровые подписи
Цифровые подписи в блокчейнах базируются на криптографии с открытым ключом. В ней используются два ключа. Первый — закрытый ключ — нужен для формирования цифровых подписей и хранится в секрете. Второй — открытый ключ — используется для проверки электронной подписи. Открытый ключ реально вычислить на основе закрытого ключа, а вот обратное преобразование требует невозможного на практике объема вычислений, сравнимого с брут-форсом.
Существует множество различных схем криптографии с открытым ключом. Две самые популярные из них — это схемы на основе разложения на множители (RSA) и схемы на основе эллиптических кривых. Последние более популярны в блокчейнах из-за меньшего размера ключей и подписей. Например, в биткойне используется стандарт эллиптической криптографии ECDSA вместе с эллиптической кривой secp256k1. В ней закрытый ключ имеет длину 32 байта, открытый — 33 байта, а подпись — около 70 байт.
Общая идея подписей с открытым ключом выглядит следующим образом. Предположим, что Алиса хочет перевести Бобу один биткойн. Для этого она формирует транзакцию, где записывает, откуда его следует брать (указание на предыдущую транзакцию, в которой Алиса получила биткойн от кого-то еще) и кому отправить (открытый ключ Боба). Алиса знает открытый ключ Боба из сторонних источников — Боб может послать его Алисе через мессенджер или даже опубликовать его на сайте.
Затем Алиса подписывает транзакцию, используя свой секретный ключ. Любой узел в биткойн-сети может проверить, что транзакция подписана определенным открытым ключом (аутентификация), с которым до выполнения транзакции был ассоциирован один биткойн (авторизация). Если эти условия выполнены, то переведенный биткойн начинает ассоциироваться с открытым ключом Боба.
Поскольку в блокчейне нет центрального узла, который может авторизовать произвольные транзакции, безопасность системы становится децентрализованной, а вероятность успешного вмешательства в работу блокчейна снижается практически до нуля.
Таким образом, блокчейн использует цифровые подписи для аутентификации и обеспечения целостности транзакций (и иногда блоков). В случае криптовалюты процесс аутентификации означает, что потратить средства может только тот человек, которому они были посланы другой, более ранней, транзакцией. Особенность блокчейна состоит в том, что информация об аутентификации «вшита» в каждую транзакцию, а не отделена от бизнес-логики, поэтому блокчейн считается более защищенным. В обычной системе можно взломать или административно обойти механизм аутентификации и провести манипуляции с бэкэндом, а в блокчейне сделать этого не получится по определению.
Чтобы понять блокчейн, нужно понять, что такое хеш
Для меня ключ к познанию блокчейна – это понимание криптографических хешей. Мне кажется, многие из нас, обычных людей, делают ошибку, представляя себе блокчейн как, в первую очередь, списки анонимных транзакций, распределённых по децентрализованным сетям. Хотя отдельный блокчейн действительно таков, иногда упускается из виду, что основой блокчейновой технологии является не децентрализация, анонимность или даже распредёленные реестры, а собственно криптография. Хотя это, наверное, очевидно для человека с базовым пониманием компьютерных наук, для большинства из нас это нечто совершенно новое.
Очень краткая история цифровых денег
Биткойн – новый подход к предыдущим экспериментам с цифровыми деньгами. В 1990-х это была горячая, но спекулятивная тема. Даже Алан Гринспен в своей речи в 1996 г. сказал:
Мы предвидим в близком будущем предложения эмитентам электронных платёжных обязательств, таких как карты с хранимой стоимостью или «цифровые деньги», создать специализированные эмиссионные корпорации с сильными балансовыми отчетами и публичными кредитными рейтингами
Таким образом, использование цифровой валюты истеблишментом было на повестке дня задолго до Биткойна. Для того чтобы освободить цифровую валюту от истеблишмента, требовалось ещё одно новшество. Этим новшеством стала криптография.
Когда Гринспен произносил свою речь, шифропанки уже экспериментировали с цифровыми валютами с явным намерением дестабилизировать банки. В числе их экспериментов, существовавших до Биткойна, были Hashcash Адама Бэка, BitGold Ника Сабо, B-Money Вэй Дая и RPOW Хэла Финни. Все они использовали возможности криптографических хеш-функций, и вместе они образуют гигантские плечи, на которых сегодня стоит Биткойн.
Что такое криптографические хеш-функции?
Криптографическая хеш-функция берёт данные и, по сути, переводит их в строку букв и цифр. Вы когда-нибудь пользовались URL-сокращалками типа Bitly или TinyURL? Это нечто похожее. Вы вводите что-то длинное, а на выходе получается что-то короткое, олицетворяющее то длинное. Только в случае криптографических хеш-функций ввод не обязательно должен быть длинным. Это может быть что-то очень короткое (например, слово «пёс») или почти бесконечно длинное (например, весь текст «Повести о двух городах»), и на выходе вы получите уникальную строку установленной длины. Кроме того, в отличие от сокращателей ссылок, хеш-функции, применяемые в Биткойне, действуют только в одном направлении. Хотя одни и те же данные всегда дадут один и тот же хеш, воспроизвести изначальные данные по полученному из них хешу невозможно.
Итак, данные вводятся в хеш-функцию, функция выполняется и получается строка букв и цифр (можете попробовать самостоятельно здесь). Эта строка называется хешем. В блокчейне Биткойна хеши состоят из 256 бит или 64 символов.
Может показаться невозможным, чтобы почти бесконечное количество данных могло последовательно переводиться в уникальную строку всего из 64 символов, но именно таким чудесным образом действуют криптографические функции. С помощью этой невероятной технологии целые книги, заполненные текстом, могут быть переведены в одну строку из 64 цифр и букв. И каждый раз, когда вы вводите одни и те же данные, вы получите не только один и тот же хеш, но уникальный и отличный от любого другого хеша.
Пример
Это было самое прекрасное время, это было самое злосчастное время, – век мудрости, век безумия, дни веры, дни безверия, пора света, пора тьмы, весна надежд, стужа отчаяния, у нас было всё впереди, у нас впереди ничего не было, мы то витали в небесах, то вдруг обрушивались в преисподнюю, – словом, время это было очень похоже на нынешнее, и самые горластые его представители уже и тогда требовали, чтобы о нём – будь то в хорошем или в дурном смысле – говорили не иначе, как в превосходной степени:
Тогда как хеш слова «пёс»:
Как работают криптографические хеш-функции
Существуют разные виды криптографических хеш-функций, и каждая из них работает по-разному. Использовавшаяся выше хеш-функция – SHA-256, хеш-функция, применяемая в Биткойне, – работает на основе безумно сложной формулы, связанной с отражением света от эллипсов. Вам не стоит слишком из-за этого переживать. Суть в том, что криптографические хеш-функции – это чертова магия, и вы никогда их до конца не поймете, если только вы не математик.
Как хеш-функции применяются в блокчейне
Чтобы блокчейн работал, он должен обновляться. Подобно банку, он должен вести актуальные записи всех транзакций и активов (например, биткойнов), имеющихся у каждого участника сети. Именно при обновлении транзакционной информации любая аутентифицирующая система уязвима для атаки. Банк сглаживает этот риск благодаря наличию строгой централизованной иерархии, гарантирующей подлинность на свой собственный риск. Так как блокчейну удаётся обновляться, оставаясь децентрализованным? Он использует криптографическую вероятностную хеш-игру, называемую «доказательство выполнения работы» (Proof of Work).
Криптография обеспечивает консенсус
Чтобы продолжать функционировать, блокчейн должен создавать новые блоки. Так как блокчейны – это децентрализованные системы, новые блоки должны создаваться не единственным аутентифицирующим субъектом, а сетью в целом. Чтобы решить, каким будет новый блок, сеть должна достичь консенсуса. Чтобы достичь консенсуса, майнеры предлагают определённые блоки, блоки верифицируются, и, наконец, сеть выбирает единственный блок, который будет следующей частью реестра. Однако очень много майнеров предлагают идентичные блоки, проходящие верификацию. Так каким образом конкретный блок выбирается, чтобы стать следующим в цепи?
Компьютеры соревнуются в хеш-игре. Всё очень просто. По сути, чтобы выиграть игру, майнящий компьютер должен угадать число, называемое «нонс» (nonce), которое в комбинации со всеми предыдущими данными блокчейна даёт при вводе в хеш-функцию SHA-256 определённый хеш.
Так обеспечивается консенсус, а также предотвращаются атаки, нацеленные на манипулирование системой. Так как результатом каждого ввода является совершенно уникальный хеш, только определенный нонс в комбинации с верными ранее верифицированными блокчейновыми данными даст хеш, решающий уравнение. При вводе неточных или мошеннических предшествующих записей не может быть угадан верный хеш. Таким образом, криптография делает блокчейны более безопасными, чем любой банк с человеческой верификацией.
Тем не менее, поскольку постепенно всё больше людей выделяли всё больше компьютерной мощности на майнинг биткойнов, возникла новая проблема. Новаторы разработали мощные компьютеры, предназначенные исключительно для майнинга биткойнов. Эти компьютеры способны предлагать хеши намного чаще, чем средний компьютер, что позволяет им прийти к верной догадке намного быстрее и, как следствие, намайнить больше биткойнов.
Проблема заключается в том, что когда всё меньше людей могут позволить себе майнинговые технологии, риск централизации возрастает. Блоки создаются и биткойны майнятся, как только находится решение следующего блока. Таким образом, имеющий ресурсы может просто собрать более мощную майнинговую машину, чем у всех других, и майнить огромный процент остающихся биткойнов быстрее всех других, просто предлагая больше догадок в более короткий срок.
10-минутное решение
Сатоши предусмотрел механизм, сглаживающий эту проблему, и он также полагается на возможности хеш-функций. Вот как я предпочитаю смотреть на его решение:
Представьте, что ваша хеш-функция на выходе вместо цифр и букв даёт животных. Существует равная вероятность, что при вводе рандомных данных хеш-функция выдаст слона или обезьяну. Ваши случайно выбираемые данные могут быть переведены либо в одно, либо в другое животное с одинаковой вероятностью.
Но теперь представьте, что вы задаёте определённые критерии того, в какое животное должна перевести ваши данные хеш-функция, чтобы работать. Это влияет на вероятность хеширования тех или иных данных в животное, удовлетворяющее вашим критериям. Например, данные «abc123» с большей вероятностью выдадут любое животное (на самом деле в данном примере вероятность 100%), чем любое двуногое, потому что существует намного больше потенциальных догадок, подходящих под любое животное, чем под любое двуногое. Ещё меньше вероятность получить любую обезьяну.
Блокчейн Биткойна работает так, что игра на отгадывание самокорректируется, чтобы всегда быть достаточно сложной, чтобы все компьютеры сети могли угадывать только каждые 10 минут, независимо от мощности отгадывающих компьютеров. Это значит, что угадывание хеша и майнинг блока сегодня теоретически намного сложнее, чем при запуске Биткойна в 2009 г., потому что в сети очень много сверхмощных компьютеров. И в самом деле, сегодня невозможно майнить биткойны с помощью обычного ноутбука, тогда как в ранние дни Биткойна все участники сети использовали стандартные компьютеры.
Так как же протокол Биткойна гарантирует, что игра на отгадывание будет становиться достаточно сложной, чтобы даже чрезвычайно мощным майнинговым компьютерам на отгадывание требовалось примерно 10 минут? Вспомните пример с обезьяной. Чем более конкретные критерии заданы для выхода хеш-функции, тем больше догадок нужно сделать, чтобы получить этот более конкретный выход. Вместо того чтобы «правильным» ответом было животное (легко), двуногое (сложно) или обезьяна (сложнее), для «правильной» строки хеша, выигрывающей игру, задаются всё более конкретные критерии. В частности, игра усложняется посредством требования наличия у правильного хеша в начале определённого количества нулей.
Представьте себе это следующим образом. Если я попрошу вас отгадать рандомное трёхзначное число, чтобы получить шоколадку, у вас больше шансов угадать, если правильное число – любое трёхзначное число, чем если это любое трёхзначное число, начинающееся с 0. Это сложно понять, но в основе лежит математический закон, говорящий, что достаточно квадратного корня N рандомных событий, чтобы вероятность их совпадения составляла 50%. Та же самая математика поддерживает парадокс дней рождения – если в комнате всего 23 человека, существует 50% вероятность, что у двух из них день рождения в один и тот же день.
К сожалению, делая угадывание числа всё сложнее и сложнее, блокчейн Биткойна неизбежно пришел к исключению из майнинга обычных людей. Но это справедливая цена децентрализации. Без этого одна богатая компания могла бы теоретически создать чрезвычайно мощный компьютер, способный мгновенно добыть все оставшиеся биткойны.
Должен заметить, что я лишь (с трудом) понимаю, как работает блокчейн Биткойна.
Другие блокчейны могут использовать криптографию совершенно иначе, чем я здесь описал. Например, я не знаю, использует ли ту же систему доказательство доли владения (proof of stake) – как утверждается, более эффективное усовершенствование доказательства выполнения работы.
Но так как блокчейн Биткойна является моделью для всех других блокчейнов, его понимание – это важнейший шаг к постижению мира криптовалют. Хотя существенно также понимание многих других аспектов блокчейна, осмысление того, как он использует криптографию, – наверное, важнейшая часть пазла.
Хэширование в Blockchain.Что такое хэш сумма.
Криптографическая хеш-функция, хеш, хеширование,об этом вы сегодня много чего узнаете, а это важно для целостного понимания устройства работы блокчейна!
Слово хеш происходит от английского «hash», одно из значений которого трактуется как путаница или мешанина. Собственно, это довольно полно описывает реальное значение этого термина. Часто еще про такой процесс говорят «хеширование», что опять же является производным от английского hashing (рубить, крошить, спутывать и т.п.). Появился этот термин в середине прошлого века среди людей занимающихся обработках массивов данных и Хеш-функция позволяла привести любой массив данных к числу заданной длины. Проще всего хеширование представить как шифр. Берется какой-нибудь текст, шифруется по определенной системе, где на выходе получается билиберда. Эту билиберду можно превратить обратно в текст, если вы знаете, как именно билиберду шифровали. Например, берем цифру 5, шифруем ее, например умножаем на 4, и получаем 20. Если разделить 20 на 4, получим исходную информацию — 5.В данном случае ключем к расшифровке является цифра 4 Буквенные шифры работают сложнее. И чтобы зашифровать текст Можно каждой букве присвоить свой номер, и таким образом зашифровать текст в виде набора чисел. Также можно сдвинуть алфавит на два символа влево и получить трудночитаемый набор букв. Или же записать текст азбукой Морзе и получить последовательность точек и тире. Кстати, азбука Морзе вам ничего не напоминает? Если Морзе кодировал буквы и цифры последовательностью точек и тире, то наши компьютеры кодируют все единицами и нулями. Одно значение (единица или ноль) называется битом. Если присвоить каждой букве латинского алфавита порядковый номер, то для передачи одной буквы понадобиться всего 4 бита. Учитывая пробелы, прописные и заглавные буквы и разные символы, получается 7 бит или один байт с нулем в начале. Так Почему же для передачи и хранения цифровых данных выбрали аналог морзянки, а не что-то вычурное? Потому что компьютеры работают на электричестве. Если по кабелю не течет ток — компьютер регистрирует ноль. Если течет — единицу. Все просто. А при мощности современного интернета, по кабелям можно надежно передавать 100 миллионов бит в секунду и даже больше Но, что будет, если компьютер на мгновение подвиснет и пропустит несколько единичек и нулей? Информация, которую он примет после подвисания, может оказаться нечитаемой. Для расшифровки битов в понятные нам буквы нужен полный и последовательный набор битов, иначе вместо оригинального текста компьютер получит нечитаемый массив из битов.
Что такое хэш сумма.
Давайте еще рассмотрим пример хеширования посложнее.Для этого сначала разберем один вопрос, а именно В чем проблема способа с подсчетом количества бит как мы с вами рассмотрели выше? А проблема в том, что под 77 бит можно подогнать и «Lorem ipsum», и «Здравствуй!» и любые другие одинадцать символов. Простой подсчет количества бит информации не позволяет проверить полученный текст на полное соответствие оригиналу. Совпадение хеш-суммы разных файлов называется коллизией и Плохой алгоритм хеширования дает большое количество коллизий. Наш алгоритм подсчета количества бит — плохой. Значит, хеш-сумму надо считать иначе. Хороший алгоритм в практическом применении не дает коллизий вообще. Это значит, что любому тексту, картинке или файлу можно присвоить уникальный идентификатор (то есть, хеш-сумму), который рассчитывается исходя из самого файла. И желательно, чтобы хеш-сумма была небольшой, и одинакового размера для всех файлов, чтобы уменьшить риск потерять биты самой хеш-суммы во время ее передачи. Алгоритмов много, но нас пока интересует лишь один — SHA-256, который используется в Биткоине и сотнях других криптовалют. Теперь рассмотрим алгоритм SHA-1, ведь так будет проще понять алгоритм SHA-256 SHA-1 придумали в Агенстве Национальной Безопасности США, небезызвестном NSA. Алгоритм предназначался для цифровой подписи документов и проверки их подлинности. Получатель принимал документ и подпись в виде хеш-суммы оригинала. Затем самостоятельно считал хеш-сумму принятого документа и сравнивал ее с полученной подписью. Если хеш-суммы совпадают — значит полученный документ полностью идентичен оригинальному. SHA-1 работает так. Исходный файл разбивается на блоки по 512 бит в каждом. Затем алгоритм определяет четыре ключа, которые не меняются в процессе хеширования, и каждый из ключей весит по 32 бита и необходим для проведения хеширования. Определяются пять случайных переменных, по длине равных ключам. Первый блок преобразуется в 80 32-х битных слов, которые состоят из цифр и первых 6 букв латинского алфавита — A, B, C, D, E и F. 80 слов разбивают на 4 части по 20 слов и каждую часть прогоняют по хитрой формуле с использованием четверых постоянных ключей и пяти переменных. В итоге получают пять слов, каждое состоит из 32 бит. Эти же слова используются как переменные для хеширования следующего блока из 512 бит. Таким образом, хеш-сумма каждого блока напрямую завязана на хеш-сумму предыдущего блока, кроме первого и При хешировании каждого блока используются одинаковые ключи и хеш-сумма предыдущего блока. Таким образом Хеш-сумма любого файла это 5 слов по 32 бита или 160 бит в целом. Теперь об интересном. Зная постоянные ключи, которые использовались для хеширования файла, можно из тех 160 бит восстановить весь документ, просто решая задачу с конца. Это называется «обратным преобразованием». И вообще-то алгоритмы хеширования стараются придумать так, чтобы это самое обратное преобразование было как можно более сложным процессом. В упрощенном виде обратное преобразование выглядит так: Например У нас есть файл (скажем число 4) и ключ (напрмиер число 5). Мы хешируем файл, используя ключ (то есть, умножаем 4 на 5), получаем хеш-сумму — число 20. Если мы знаем хеш-сумму, ключ, по которому хешировали файл, и алгоритм хеширования, то можем просто посчитать формулу в обратном порядке — поделить 20 на 5 и получим наше исходное значение файла А теперь, вопрос?. Действительно ли хеш-сумма по SHA-1 полностью соответствует оригинальному файлу или кажется случайным набором букв и цифр? Что будет, если чуть-чуть изменить исходный файл? Вот, сравните. Отличия — во второй фразе букву P я написал заглавной. Такая вот кардинальная перемена результата при малейшем изменении исходного файла получила название «эффекта лавины» или лавинный эффект. Алгоритм SHA-1 оказался неплохим, но все же уязвимым к коллизиям и обратному преобразованию, хотя восстановление файла по его хешу без знания ключей займет в лучшем случае несколько миллиардов лет. Но Когда на горизонте замаячили квантовые компьютеры, от алгоритма SHA-1 отказались все крупные IT компании, включая Гугл и Яндекс. Да и создатель алгоритма, нацбезопасность США, начала думать над чем-то понадежней. На смену SHA-1 пришел SHA-2. SHA-2 работает по схожему принципу, но использует только один ключ и более хитрые формулы для хеширования. Базовый принцип остался тем же — файл разбивается на блоки, хеш-сумма каждого блока основана на хеш-сумме предыдущего.
Хэширование Bitcoin SHA-256
Криптовалюты Биткоин же работает на алгоритме SHA-256, некой модификации сырого SHA-2. Только на выходе получается не 5 слов, как в первой версии, а целых 8. Восемь 32-х битных слов образуют хеш-сумму размером 256 бит — отсюда и название алгоритма. SHA—256 это классический алгоритм для криптовалют: на нем построена не только основная криптовалюта — Bitcoin, Но и Соответственно в форках bitcoin таких как Bitcoin Cash, Bitcoin Gold, Bitcoin Diamond. используется этот же алгоритм Помимо этих монет, SHA—256 используется также в: * Steemit; * DigiByte; * PeerCoin; * NameCoin; * TeckCoin; * Ocoin; * Zetacoin; * EmerCoin.И многих других Также алгоритм SHA-256 используется как подпрограмма в криптовалюте Litecoin, а основным алгоритмом для майнинга там является Scrypt.Но эти все монеты темы совсем другой рубрики, поэтому просто продолжим говорить о хешировании. Давайте систематизируем кое-что из уже сказанного.В общем процесс хеширования — это череда математических воздействий которым подвергаются данные произвольной длины для преобразования на выходе в битовую строку фиксированной длины. И Каждый из алгоритмов работает по своему, но хорошая хеш-функция должна обладать следующими свойствами
Все это обязательные условия хорошей хеш функции и Хеширование очень важно для работы блокчейна. Как вы возможно знаете, все, что записано в блокчейне, уже никак нельзя изменить или удалить. А все потому, что данные в блокчейн записываются в виде хеш-суммы всего блока. А хеш-сумма блока рассчитывается с использованием хеш-суммы предыдущего блока, то есть исходная информация блока состоит не только от его содержания, но и в том числе и из хеш суммы предыдущего блока и поэтому Малейшее изменение данных в старом блоке вызовет эффект лавины, и блокчейн просто отбросит блок со странной хеш-суммой. Именно поэтому никто и никогда не смог взломать Биткоин. И именно поэтому советуют подождать шесть подтверждений в сети, чтобы сформировалось шесть и больше блоков, ведь вероятность, что один майнер посчитает шесть и больше блоков ничтожно мала, поэтому чем больше прошло времени и подтверждений после транзакции в сети биткоин, тем надежнее можно считать эту транзакцию. И это все связано с майнингом, который так-же основан на хешировании.