Что такое хэш функция и зачем нужны хэш таблицы

Хеш-таблица

Определение:
Хеш-табли́ца (англ. hash-table) — структура данных, реализующая интерфейс ассоциативного массива. В отличие от деревьев поиска, реализующих тот же интерфейс, обеспечивают меньшее время отклика в среднем. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу.

Содержание

Введение [ править ]

Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения.

что в общем случае [math] \gt \dfrac<1><2>[/math][math]\triangleleft[/math]

Способ разрешения коллизий — важная составляющая любой хеш-таблицы.

Если мы поделим число хранимых элементов на размер массива [math]H[/math] (число возможных значений хеш-функции), то узнаем коэффициент заполнения хеш-таблицы (англ. load factor). От этого параметра зависит среднее время выполнения операций.

Хеширование [ править ]

Хеширование (англ. hashing) — класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за [math]O(1)[/math] ). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. Для того чтобы коллизии не замедляли работу с таблицей существуют методы для борьбы с ними.

Виды хеширования [ править ]

Статическое — фиксированное количество элементов. Один раз заполняем хеш-таблицу и осуществляем только проверку на наличие в ней нужных элементов,

Динамическое — добавляем, удаляем и смотрим на наличие нужных элементов.

Свойства хеш-таблицы [ править ]

Хеширование в современных языках программирования [ править ]

Почти во всех современных языках присутствуют классы, реализующие хеширование. Рассмотрим некоторые из них.

Источник

Хеш-таблицы

Предисловие

Я много раз заглядывал на просторы интернета, нашел много интересных статей о хеш-таблицах, но вразумительного и полного описания того, как они реализованы, так и не нашел. В связи с этим мне просто нетерпелось написать пост на данную, столь интересную, тему.

Возможно, она не столь полезна для опытных программистов, но будет интересна для студентов технических ВУЗов и начинающих программистов-самоучек.

Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы

Мотивация использовать хеш-таблицы

Для наглядности рассмотрим стандартные контейнеры и асимптотику их наиболее часто используемых методов.

Контейнер \ операцияinsertremovefind
ArrayO(N)O(N)O(N)
ListO(1)O(1)O(N)
Sorted arrayO(N)O(N)O(logN)
Бинарное дерево поискаO(logN)O(logN)O(logN)
Хеш-таблицаO(1)O(1)O(1)

Все данные при условии хорошо выполненных контейнерах, хорошо подобранных хеш-функциях

Из этой таблицы очень хорошо понятно, почему же стоит использовать хеш-таблицы. Но тогда возникает противоположный вопрос: почему же тогда ими не пользуются постоянно?
Ответ очень прост: как и всегда, невозможно получить все сразу, а именно: и скорость, и память. Хеш-таблицы тяжеловесные, и, хоть они и быстро отвечают на вопросы основных операций, пользоваться ими все время очень затратно.

Понятие хеш-таблицы

Хеш-таблица — это контейнер, который используют, если хотят быстро выполнять операции вставки/удаления/нахождения. В языке C++ хеш-таблицы скрываются под флагом unoredered_set и unordered_map. В Python вы можете использовать стандартную коллекцию set — это тоже хеш-таблица.
Реализация у нее, возможно, и не очевидная, но довольно простая, а главное — как же круто использовать хеш-таблицы, а для этого лучше научиться, как они устроены.

Для начала объяснение в нескольких словах. Мы определяем функцию хеширования, которая по каждому входящему элементу будет определять натуральное число. А уже дальше по этому натуральному числу мы будем класть элемент в (допустим) массив. Тогда имея такую функцию мы можем за O(1) обработать элемент.

Теперь стало понятно, почему же это именно хеш-таблица.

Проблема коллизии

Естественно, возникает вопрос, почему невозможно такое, что мы попадем дважды в одну ячейку массива, ведь представить функцию, которая ставит в сравнение каждому элементу совершенно различные натуральные числа просто невозможно. Именно так возникает проблема коллизии, или проблемы, когда хеш-функция выдает одинаковое натуральное число для разных элементов.

Существует несколько решений данной проблемы: метод цепочек и метод двойного хеширования. В данной статье я постараюсь рассказать о втором методе, как о более красивом и, возможно, более сложном.

Решения проблемы коллизии методом двойного хеширования

Мы будем (как несложно догадаться из названия) использовать две хеш-функции, возвращающие взаимопростые натуральные числа.

Одна хеш-функция (при входе g) будет возвращать натуральное число s, которое будет для нас начальным. То есть первое, что мы сделаем, попробуем поставить элемент g на позицию s в нашем массиве. Но что, если это место уже занято? Именно здесь нам пригодится вторая хеш-функция, которая будет возвращать t — шаг, с которым мы будем в дальнейшем искать место, куда бы поставить элемент g.

Мы будем рассматривать сначала элемент s, потом s + t, затем s + 2*t и т.д. Естественно, чтобы не выйти за границы массива, мы обязаны смотреть на номер элемента по модулю (остатку от деления на размер массива).

Наконец мы объяснили все самые важные моменты, можно перейти к непосредственному написанию кода, где уже можно будет рассмотреть все оставшиеся нюансы. Ну а строгое математическое доказательство корректности использования двойного хеширования можно найти тут.

Реализация хеш-таблицы

Для наглядности будем реализовывать хеш-таблицу, хранящую строки.

Начнем с определения самих хеш-функций, реализуем их методом Горнера. Важным параметром корректности хеш-функции является то, что возвращаемое значение должно быть взаимопросто с размером таблицы. Для уменьшения дублирования кода, будем использовать две структуры, ссылающиеся на реализацию самой хеш-функции.

Чтобы идти дальше, нам необходимо разобраться с проблемой: что же будет, если мы удалим элемент из таблицы? Так вот, его нужно пометить флагом deleted, но просто удалять его безвозвратно нельзя. Ведь если мы так сделаем, то при попытке найти элемент (значение хеш-функции которого совпадет с ее значением у нашего удаленного элемента) мы сразу наткнемся на пустую ячейку. А это значит, что такого элемента и не было никогда, хотя, он лежит, просто где-то дальше в массиве. Это основная сложность использования данного метода решения коллизий.

Помня о данной проблеме построим наш класс.

На данном этапе мы уже более-менее поняли, что у нас будет храниться в таблице. Переходим к реализации служебных методов.

Из необходимых методов осталось еще реализовать динамическое увеличение, расширение массива — метод Resize.

Увеличиваем размер мы стандартно вдвое.

Немаловажным является поддержание асимптотики O(1) стандартных операций. Но что же может повлиять на скорость работы? Наши удаленные элементы (deleted). Ведь, как мы помним, мы ничего не можем с ними сделать, но и окончательно обнулить их не можем. Так что они тянутся за нами огромным балластом. Для ускорения работы нашей хеш-таблицы воспользуемся рехешом (как мы помним, мы уже выделяли под это очень странные переменные).

Теперь воспользуемся ими, если процент реальных элементов массива стал меньше 50, мы производим Rehash, а именно делаем то же самое, что и при увеличении таблицы (resize), но не увеличиваем. Возможно, это звучит глуповато, но попробую сейчас объяснить. Мы вызовем наши хеш-функции от всех элементов, переместим их в новых массив. Но с deleted-элементами это не произойдет, мы не будем их перемещать, и они удалятся вместе со старой таблицей.

Но к чему слова, код все разъяснит:

Ну теперь мы уже точно на финальной, хоть и длинной, и полной колючих кустарников, прямой. Нам необходимо реализовать вставку (Add), удаление (Remove) и поиск (Find) элемента.

Начнем с самого простого — метод Find элемент по значению.

Далее мы реализуем удаление элемента — Remove. Как мы это делаем? Находим элемент (как в методе Find), а затем удаляем, то есть просто меняем значение state на false, но сам Node мы не удаляем.

Ну и последним мы реализуем метод Add. В нем есть несколько очень важных нюансов. Именно здесь мы будем проверять на необходимость рехеша.

Помимо этого в данном методе есть еще одна часть, поддерживающая правильную асимптотику. Это запоминание первого подходящего для вставки элемента (даже если он deleted). Именно туда мы вставим элемент, если в нашей хеш-таблицы нет такого же. Если ни одного deleted-элемента на нашем пути нет, мы создаем новый Node с нашим вставляемым значением.

Источник

Хэш-таблицы

В этой статье вы познакомитесь с хэш-таблицами и увидите примеры их реализации в Cи, C++, Java и Python.

Хэш-таблица — это структура данных, в которой все элементы хранятся в виде пары ключ-значение, где:

Хэширование (хэш-функция)

В хэш-таблице обработка новых индексов производится при помощи ключей. А элементы, связанные с этим ключом, сохраняются в индексе. Этот процесс называется хэшированием.

Пусть k — ключ, а h(x) — хэш-функция.

Коллизии

Когда хэш-функция генерирует один индекс для нескольких ключей, возникает конфликт (неизвестно, какое значение нужно сохранить в этом индексе). Это называется коллизией хэш-таблицы.

Есть несколько методов борьбы с коллизиями:

1. Метод цепочек

Суть этого метода проста: если хэш-функция выделяет один индекс сразу двум элементам, то храниться они будут в одном и том же индексе, но уже с помощью двусвязного списка.

Псевдокод операций

2. Открытая адресация

Существует несколько видов открытой адресации:

a) Линейное зондирование

Линейное зондирование решает проблему коллизий с помощью проверки следующей ячейки.

Проблема линейного зондирования заключается в том, что заполняется кластер соседних ячеек. Это приводит к тому, что при вставке нового элемента в хэш-таблицу необходимо проводить полный обход кластера. В результате время выполнения операций с хэш-таблицами увеличивается.

b) Квадратичное зондирование

Работает оно так же, как и линейное — но есть отличие. Оно заключается в том, что расстояние между соседними ячейками больше (больше одного). Это возможно благодаря следующему отношению:

c) Двойное хэширование

h(k, i) = (h1(k) + ih2(k)) mod m

«Хорошие» хэш-функции

«Хорошие» хэш-функции не уберегут вас от коллизий, но, по крайней мере, сократят их количество.

Ниже мы рассмотрим различные методы определения «качества» хэш-функций.

1. Метод деления

Если k — ключ, а m — размер хэш-таблицы, то хэш-функция h() вычисляется следующим образом:

2. Метод умножения

3. Универсальное хеширование

В универсальном хешировании хеш-функция выбирается случайным образом и не зависит от ключей.

Источник

Что такое хеш-таблицы, и как они работают

Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы

Хеш-таблица (hash table) — это специальная структура данных для хранения пар ключей и их значений. По сути это ассоциативный массив, в котором ключ представлен в виде хеш-функции.

Пожалуй, главное свойство hash-таблиц — все три операции: вставка, поиск и удаление — в среднем выполняются за время O(1), среднее время поиска по ней также равно O(1) и O(n) в худшем случае.

Простое представление хеш-таблиц

Чтобы разобраться, что такое хеш-таблицы, представьте, что вас попросили создать библиотеку и заполнить ее книгами. Но вы не хотите заполнять шкафы в произвольном порядке.

Первое, что приходит в голову — разместить все книги в алфавитном порядке и записать все в некий справочник. В этом случае не придется искать нужную книгу по всей библиотеке, а только по справочнику.

А можно сделать еще удобнее. Если изначально отталкиваться от названия книги или имени автора, то лучше использовать некий алгоритм хеширования, который обрабатывает входящее значение и выдает номер шкафа и полки для нужной книги.

Зная этот алгоритм хэширования, вы быстро найдете нужную книгу по ее названию.

Учтите, что хеш-функция должна иметь следующие свойства:

Борьба с коллизиями (они же столкновения)

В идеальном случае, когда заранее известны все пары ключ-значение, достаточно легко реализовать идеальную хеш-таблицу, в которой время поиска будет постоянным (используется идеальная хеш-функция, которая определяет положения в таблице по целым значениям и без столкновений).

Но в большинстве случаев приходится бороться с коллизиями. Обычно применяются методы цепочек и открытой индексации.

Метод цепочек

Этот метод часто называют открытым хешированием. Его суть проста — элементы с одинаковым хешем попадают в одну ячейку в виде [https://ru.wikipedia.org/wiki/%D0%A1%D0%B2%D1%8F%D0%B7%D0%BD%D1%8B%D0%B9_%D1%81%D0%BF%D0%B8%D1%81%D0%BE%D0%BA связного списка].

То есть, если ячейка с хешем уже занята, но новый ключ отличается от уже имеющегося, то новый элемент вставляется в список в виде пары ключ-значение.

В C++ метод цепочек реализуется так:

Проверка ячейки и создание списка

Открытая индексация (или закрытое хеширование)

Второй распространенный метод — открытая индексация. Это значит, что пары ключ-значение хранятся непосредственно в хеш-таблице. А алгоритм вставки проверяет ячейки в некотором порядке, пока не будет найдена пустая ячейка. Порядок вычисляется на лету.

Самая простая в реализации последовательность проб — линейное пробирование (или линейное исследование). Здесь все просто — в случае коллизии, следующие ячейки проверяются линейно, пока не будет найдена пустая ячейка.

А алгоритм поиска ищет ячейки в том же порядке, что и при вставке, пока не найдет нужный элемент или пустую ячейку, которая говорит о том, что ключ отсутствует. В случае, если таблица будет заполнена, ее придется динамически расширять.

Метод линейного пробирования для открытой индексации на C++:

Проверка ячеек и вставка значения

Самое главное

Хеширование и хеш-таблицы применяются для более удобного хранения пар ключ-значение. Если нужна максимальная эффективность, то используйте хеш-таблицы со списками будет намного быстрее, чем обычная таблица.

Этот текст был написан несколько лет назад. С тех пор упомянутые здесь инструменты и софт могли получить обновления. Пожалуйста, проверяйте их актуальность.

Источник

Чудеса хеширования

Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, защиту файлов и даже обнаружение зловредного ПО. Как они работают и где применяются?

Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы

Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы

Криптографические хеш-функции — незаменимый и повсеместно распространенный инструмент, используемый для выполнения целого ряда задач, включая аутентификацию, проверку целостности данных, защиту файлов и даже обнаружение зловредного ПО. Существует масса алгоритмов хеширования, отличающихся криптостойкостью, сложностью, разрядностью и другими свойствами. Считается, что идея хеширования принадлежит сотруднику IBM, появилась около 50 лет назад и с тех пор не претерпела принципиальных изменений. Зато в наши дни хеширование обрело массу новых свойств и используется в очень многих областях информационных технологий.

Что такое хеш?

Если коротко, то криптографическая хеш-функция, чаще называемая просто хешем, — это математический алгоритм, преобразовывающий произвольный массив данных в состоящую из букв и цифр строку фиксированной длины. Причем при условии использования того же типа хеша длина эта будет оставаться неизменной, вне зависимости от объема вводных данных. Криптостойкой хеш-функция может быть только в том случае, если выполняются главные требования: стойкость к восстановлению хешируемых данных и стойкость к коллизиям, то есть образованию из двух разных массивов данных двух одинаковых значений хеша. Интересно, что под данные требования формально не подпадает ни один из существующих алгоритмов, поскольку нахождение обратного хешу значения — вопрос лишь вычислительных мощностей. По факту же в случае с некоторыми особо продвинутыми алгоритмами этот процесс может занимать чудовищно много времени.

Как работает хеш?

Например, мое имя — Brian — после преобразования хеш-функцией SHA-1 (одной из самых распространенных наряду с MD5 и SHA-2) при помощи онлайн-генератора будет выглядеть так: 75c450c3f963befb912ee79f0b63e563652780f0. Как вам скажет, наверное, любой другой Брайан, данное имя нередко пишут с ошибкой, что в итоге превращает его в слово brain (мозг). Это настолько частая опечатка, что однажды я даже получил настоящие водительские права, на которых вместо моего имени красовалось Brain Donohue. Впрочем, это уже другая история. Так вот, если снова воспользоваться алгоритмом SHA-1, то слово Brain трансформируется в строку 97fb724268c2de1e6432d3816239463a6aaf8450. Как видите, результаты значительно отличаются друг от друга, даже несмотря на то, что разница между моим именем и названием органа центральной нервной системы заключается лишь в последовательности написания двух гласных. Более того, если я преобразую тем же алгоритмом собственное имя, но написанное уже со строчной буквы, то результат все равно не будет иметь ничего общего с двумя предыдущими: 760e7dab2836853c63805033e514668301fa9c47.

Впрочем, кое-что общее у них все же есть: каждая строка имеет длину ровно 40 символов. Казалось бы, ничего удивительного, ведь все введенные мною слова также имели одинаковую длину — 5 букв. Однако если вы захешируете весь предыдущий абзац целиком, то все равно получите последовательность, состоящую ровно из 40 символов: c5e7346089419bb4ab47aaa61ef3755d122826e2. То есть 1128 символов, включая пробелы, были ужаты до строки той же длины, что и пятибуквенное слово. То же самое произойдет даже с полным собранием сочинений Уильяма Шекспира: на выходе вы получите строку из 40 букв и цифр. При всем этом не может существовать двух разных массивов данных, которые преобразовывались бы в одинаковый хеш.

Вот как это выглядит, если изобразить все вышесказанное в виде схемы:

Что такое хэш функция и зачем нужны хэш таблицы. Смотреть фото Что такое хэш функция и зачем нужны хэш таблицы. Смотреть картинку Что такое хэш функция и зачем нужны хэш таблицы. Картинка про Что такое хэш функция и зачем нужны хэш таблицы. Фото Что такое хэш функция и зачем нужны хэш таблицы

Для чего используется хеш?

Отличный вопрос. Однако ответ не так прост, поскольку криптохеши используются для огромного количества вещей.

Для нас с вами, простых пользователей, наиболее распространенная область применения хеширования — хранение паролей. К примеру, если вы забыли пароль к какому-либо онлайн-сервису, скорее всего, придется воспользоваться функцией восстановления пароля. В этом случае вы, впрочем, не получите свой старый пароль, поскольку онлайн-сервис на самом деле не хранит пользовательские пароли в виде обычного текста. Вместо этого он хранит их в виде хеш-значений. То есть даже сам сервис не может знать, как в действительности выглядит ваш пароль. Исключение составляют только те случаи, когда пароль очень прост и его хеш-значение широко известно в кругах взломщиков. Таким образом, если вы, воспользовавшись функцией восстановления, вдруг получили старый пароль в открытом виде, то можете быть уверены: используемый вами сервис не хеширует пользовательские пароли, что очень плохо.

Вы даже можете провести простой эксперимент: попробуйте при помощи специального сайта произвести преобразование какого-нибудь простого пароля вроде «123456» или «password» из их хеш-значений (созданных алгоритмом MD5) обратно в текст. Вероятность того, что в базе хешей найдутся данные о введенных вами простых паролях, очень высока. В моем случае хеши слов «brain» (8b373710bcf876edd91f281e50ed58ab) и «Brian» (4d236810821e8e83a025f2a83ea31820) успешно распознались, а вот хеш предыдущего абзаца — нет. Отличный пример, как раз для тех, кто все еще использует простые пароли.

Еще один пример, покруче. Не так давно по тематическим сайтам прокатилась новость о том, что популярный облачный сервис Dropbox заблокировал одного из своих пользователей за распространение контента, защищенного авторскими правами. Герой истории тут же написал об этом в твиттере, запустив волну негодования среди пользователей сервиса, ринувшихся обвинять Dropbox в том, что он якобы позволяет себе просматривать содержимое клиентских аккаунтов, хотя не имеет права этого делать.

Впрочем, необходимости в этом все равно не было. Дело в том, что владелец защищенного копирайтом контента имел на руках хеш-коды определенных аудио- и видеофайлов, запрещенных к распространению, и занес их в список блокируемых хешей. Когда пользователь предпринял попытку незаконно распространить некий контент, автоматические сканеры Dropbox засекли файлы, чьи хеши оказались в пресловутом списке, и заблокировали возможность их распространения.

Где еще можно использовать хеш-функции помимо систем хранения паролей и защиты медиафайлов? На самом деле задач, где используется хеширование, гораздо больше, чем я знаю и тем более могу описать в одной статье. Однако есть одна особенная область применения хешей, особо близкая нам как сотрудникам «Лаборатории Касперского»: хеширование широко используется для детектирования зловредных программ защитным ПО, в том числе и тем, что выпускается нашей компанией.

Как при помощи хеша ловить вирусы?

Примерно так же, как звукозаписывающие лейблы и кинопрокатные компании защищают свой контент, сообщество создает списки зловредов (многие из них доступны публично), а точнее, списки их хешей. Причем это может быть хеш не всего зловреда целиком, а лишь какого-либо его специфического и хорошо узнаваемого компонента. С одной стороны, это позволяет пользователю, обнаружившему подозрительный файл, тут же внести его хеш-код в одну из подобных открытых баз данных и проверить, не является ли файл вредоносным. С другой — то же самое может сделать и антивирусная программа, чей «движок» использует данный метод детектирования наряду с другими, более сложными.

Криптографические хеш-функции также могут использоваться для защиты от фальсификации передаваемой информации. Иными словами, вы можете удостовериться в том, что файл по пути куда-либо не претерпел никаких изменений, сравнив его хеши, снятые непосредственно до отправки и сразу после получения. Если данные были изменены даже всего на 1 байт, хеш-коды будут отличаться, как мы уже убедились в самом начале статьи. Недостаток такого подхода лишь в том, что криптографическое хеширование требует больше вычислительных мощностей или времени на вычисление, чем алгоритмы с отсутствием криптостойкости. Зато они в разы надежнее.

Кстати, в повседневной жизни мы, сами того не подозревая, иногда пользуемся простейшими хешами. Например, представьте, что вы совершаете переезд и упаковали все вещи по коробкам и ящикам. Погрузив их в грузовик, вы фиксируете количество багажных мест (то есть, по сути, количество коробок) и запоминаете это значение. По окончании выгрузки на новом месте, вместо того чтобы проверять наличие каждой коробки по списку, достаточно будет просто пересчитать их и сравнить получившееся значение с тем, что вы запомнили раньше. Если значения совпали, значит, ни одна коробка не потерялась.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *