Что такое фронтальная гроза

В зависимости от условий образования различают внутримассовые (конвективные, адвективные, орографические) и фронтальные грозы.

Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза

Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза

Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза

Конвективные грозы возникают в случаях, когда земная поверхность прогрета, а воздушная масса в нижнем слое теплая и влажная, а выше относительно холодная. Такие облака развиваются в послеполуденные часы в размытом барическом поле, на периферии заполняющихся циклонов и в седловинах.

Адвективные грозы возникают в летнее время в быстро перемещающейся относительно холодной, но влажной воздушной массе над теплой подстилающей поверхностью. Как правило, такие грозы развиваются в передней части гребня в холодной воздушной массе за холодным фронтом.

Орографические грозы образуются в предгорных и горных районах в результате вынужденного подъема неустойчивой воздушной массы вдоль наветренных склонов горных препятствий. Наиболее интенсивными и продолжительными они бывают в тех местах, где склоны гор в середине дня обращены к Солнцу.

Фронтальные грозы наблюдаются на холодных фронтах и фронтах окклюзии преимущественно в летнее время, но могут возникать и ранней весной, поздней осенью, в отдельных случаях зимой.

На теплых фронтах также могут возникать грозы, но преимущественно в ночное время. Это объясняется тем, что неустойчивость возникает в результате охлаждения верхней границы слоисто-дождевой облачности (за счет излучения и охлаждения).

Интенсивность грозовой деятельности на фронте зависит от контраста температур, влагосодержания и скорости перемещения фронта.

Источник

Различают внутримассовые и фронтальные грозы.

Внутримассовыегрозы наблюдаются двух типов: 1) в холодных воздушных массах, перемещающихся на теплую земную поверхность; 2) над прогретой сушей (местные грозы).

В обоих случаях развитие грозы связано с сильной неустойчивостью стратификации атмосферы и вертикальными перемещениями воздуха, сопровождающимися мощным развитием облаков конвекции, возникающих в ре­зультате адиабатического охлаждения воздуха в восходящих токах. По международной классификации, это кучевые облака (гл. 4), которые в процессе последующего вертикального развития, по достижении высоты уровня оледенения (температура –8° или ниже), могут превратиться в кучево-дождевые. В этом случае в верхних их частях появляются ледяные кристаллы, что внешне выражается в потере клубообразного характера вершин и в появлении волокнистой структуры. Этот процесс и приводит к выпадению ливневых осадков из кучево-дождевых облаков.

В умеренных широтах кучево-дождевые облака могут достигать высоты 13 км, в тропиках – 15 км. Впоперечнике они могут составлять 20 км.Облака состоят из отдельных ячеек, существование которых, в среднем, составляет 40 минут.

В холодных воздушных массах, движущихся над теплой поверхностью, облака конвекции возникают и над сушей, и над морем.

Над сушей летом мощные кучевые облака могут образоваться не только на линии фронта, но и внутри воздушной массы над сильно прогревающейся поверхностью почвы. В этих случаях облакообразование имеет особенно ярко выраженный суточный ход. Наибольшее развитие облака получают после полудня, в них часто образуются грозы, иногда с градом.

Зимой над сушей, покрытой снегом, облака конвекции редки или отсутствуют вовсе. Над морем облака конвекции развиваются также и зимой.

Возникновению или усилению гроз могут также способствовать и некоторые механические процессы. Если холодная воздушная масса распространяется вдоль земной поверхности и вытесняет теплый воздух вверх (холодный фронт). В горных районах грозы возникают при орографических восходящих движениях воздуха, – поднимаясь по склонам, восходящие движения увеличивают вероятность развития конвективных облаков и связанных с ними явлений погоды.

Фронтальные грозы связаны главным образом с холодными фронтами циклонов, где, как рассмотрено выше, теплый воздух вытесняется вверх продвигающимся вперед холодным воздухом. Летом над сушей грозы нередко связаны и с теплыми фронтами. В этом случае континентальный теплый воздух, поднимающийся летом над поверхностью теплого фронта, может оказаться неустойчиво стратифицированным, что приводит к возникновению сильной конвекции над поверхностью фронта.

Обстоятельное исследование влияния географических факторов и синоптических процессов на грозовую активность выполнено В.П. Горбатенко. Рассмотрим наиболее значимые результаты автора.

Поскольку грозы развиваются, преимущественно, в циклонических по­лях, В.П. Горбатенко [27–29] были рассмотрены пути перемещения циклонов, при которых над Западной Сибирью и Казахстаном наблюдались грозы. Были выделены несколько групп циклонов, с которыми над каждой из рассматриваемых территорий создаются условия для возникновения гроз. Оказалось, что наиболее грозоопасными являются циклоны следующих групп:

1.Смещающиеся с западной составляющей вдоль 60–65 параллели с. ш. Циклоны смещаются с центральных районов ЕТР и среднего Урала к Восточно-Сибирскому плоскогорью. Траектории циклонов чаще повторяются в июне и июле. Грозы возникают по всей территории при прохождении холодных и вторичных холодных фронтов.

2.Образующиеся на волне полярного фронта в районе Екатеринбурга, Омска, Самары. Фронтальные разделы, расположенные в ложбине в широтном или юго-западном направлении почти всегда имеют волны. Летом (особенно в июне) повторяемость циклонов в два раза больше, чем весной или осенью.

3.Продвигающиеся из районов Каспийского и Аральского морей. С выходом этих циклонов связаны резкие изменения погоды. Термобарическое поле характеризуется сильно развитой меридианальностью направлений. Грозы отмечаются повсеместно. Наибольшая повторяемость циклонов приходится на май-июнь.

Самую большую пространственную неоднородность могут обеспечивать грозы, возникшие в южных циклонах:

4. Циклоны, образующиеся в районе оз. Балхаш или на юге Западной Сибири. Фронтальные разделы, расположенные по широте, либо в юго-западном направлении, всегда имеют волны. В течение летнего периода они имеют почти одинаковую повторяемость. Циклоны приносят сухую воздушную массу, поэтому грозы отмечаются только на отдельных станциях, там, где достаточно местной влаги.

5. Циклоны, образовавшиеся в районах Ашхабада, Ташкента, либо в междуречье Аму-Дарьи и Сыр-Дарьи (южные циклоны), смещаются на севе­ро-восток. Поскольку циклоны сформированы в сухой воздушной массе, то, как правило, интенсивных гроз не образуют.

Грозы в этих в южных циклонах возникают лишь на отдельных станциях, где достаточно местной влаги. Заметим, что количество циклонов, принадлежащих к той или иной группе классификации В.П. Горбатенко, в различные годы разное, и определяется макроциркуляционными процессами, происходящими в атмосфере

Исследование соотношения фронтальных и внутримассовых гроз над различными регионами показало, что на территории Казахстана межгодовые вариации запасов продуктивной влаги в почве к началу грозового сезона оказывают значительное влияние на число внутримассовых гроз и на общее коли­чество гроз в отдельные годы. Различие в запасах продуктивной влаги служит причиной пространственной неоднородности грозовой активности на равнинах зоны недостаточного увлажнения за счет увеличения доли внутримассовых гроз (на 30 % и более).

Установлено, что на холмистых территориях северного Казахстана фронтальных гроз на 15–20 % больше, чем над равнинными. Большее количество фронтальных гроз, вызвано обострением фронтов над возвышенностями, в связи с усилением восходящих движений воздуха над склонами.

Над степными равнинами соотношение фронтальных и внутримассовых гроз может различаться на 10 % и более. Основные различия наблюдаются в отношении гроз, возникающих на холодных фронтах. В этом случае на неоднородность пространственного возникновения фронтальных гроз на равнинных территориях влияет наличие «островов» тепла и холода, а внутримассовых – наличие и влажностных различий в состоянии подстилающей поверхности. По количеству генерируемых разрядов фронтальные грозы значительно интенсивнее внутримассовых (65–70 % от суммы всех разрядов), но доля разрядов «облако-земля» больше во внутримассовых грозах.

Продолжительность грозы обычно составляет от минут до нескольких часов. Число молний при сильной грозе измеряется десятками в одну минуту. Как уже упоминалось, гроза сопровождается ливневыми осадками, иногда градом.

Есть подсчеты, по которым на Земном шаре одновременно происходит 1800 гроз, а общее число молний примерно 100 в каждую секунду [83; 84].

Грозы особенно часты над сушей в тропической зоне: здесь есть районы, где в году 100–150 дней и более с грозами. Тропические циклоны (тайфуны) всегда сопровождаются жестокими грозами. В субтропических широтах, где преобладает высокое давление (см. рис. 5.2, 5.3), гроз гораздо меньше: над сушей 20–50 дней в году, над морем 5–20 дней. В умеренных широтах 10–30 дней с грозами над сушей и 5–10 дней над морем. В полярных широтах грозы – единичное явление (рис. 5.32).

Уменьшение количества гроз от низких широт к высоким объясняется тем, что для осуществления грозы требуется не только сильная конвекция, но и большая водность облаков. Последняя убывает в высоких широтах вследствие понижения температуры воздуха.

Для объяснения формирования такой электрической структуры грозового облака предлагалось много механизмов, но до сих пор этот вопрос не раскрыт. Основная гипотеза основана на том, что если более крупные и тяжёлые облачные частицы заряжаются преимущественно отрицательно, а более лёгкие мелкие частицы – положительно, то пространственное разделение зарядов возникает из-за большей скорости падения крупных частиц. Лабораторные эксперименты показывают, что сильная передача заряда происходит при взаимодействии частиц ледяной крупы или града с ледяными кристаллами в присутствии переохлаждённых водяных капель, причем знак и величина передаваемого при контактах заряда зависят от температуры окружающего воздуха и водности облака, от размеров ледяных кристаллов, скорости столкновения и других факторов. Не исключено действие и других механизмов.

Когда величина накопившегося в облаке объёмного электрического заряда становится достаточно большой, то между областями, заряженными противоположным знаком, происходит молниевый разряд. Разряд может произойти также между облаком и землёй, облаком и атмосферой, облаком и ионосферой. В типичной грозе обычно менее одной третьей разрядов приходится на разряды типа «облако-земля».

Что такое фронтальная гроза. Смотреть фото Что такое фронтальная гроза. Смотреть картинку Что такое фронтальная гроза. Картинка про Что такое фронтальная гроза. Фото Что такое фронтальная гроза

Рис. 5.32. Среднее годовое число дней с грозами [84]

Молния состоит из нескольких последовательных разрядов, проходящих по одному и тому же пути – каналу молнии, который не прямолинеен, а извилист и разветвленный, так как направлен по пути наибольшей плотности атмосферных ионов. В канале воздух раскаляется до ослепительного розово-фиолетового свечения, температура в нем достигает 25000–30000°. Сразу же после того, как канал проложен, по нему происходит сильный главный разряд. Повторныеразряды бывают слабее. Продолжительность всех разрядов молнии составляет десятые доли секунды.

Быстрое расширение воздуха в канале молнии производит взрывную волну, которая и создает звуковой эффект – гром. Гром имеет характер длительных раскатов, поскольку звук от различных точек по пути молнии доходит до наблюдателя не одновременно, а также происходит его отражение от облаков и от земли.

Электрическое поле формируются не только в силу происходящих в нем процессов, но и под воздействием многих внешних факторов. На строение и структуру атмосферы существенное влияние может оказать структура земной коры. В процессе взаимодействия атмосферы и подстилающей поверхности происходит интенсивный газообмен, аэрозолеобмен, тепло- и влагообмен и другие процессы. В зонах структурно-геологических неоднородностей земной коры, пространственное положение которых обнаруживают аномалии геофизиче­ских полей, такой обмен осуществляется наиболее интенсивно. Вопрос о связи грозовых явлений с геологическими особенностями территорий и с гео­физическими аномалиями в литературе неоднократно поднимался. При всей трудности его физической интерпретации было установлено, что в районах геологических неоднородностей наблюдается резкое усиление грозопоражаемости линий электропередачи.

Например, согласно В.П. Горбатенко и другим авторам, отрицательные аномалии силы тяжести присущи областям с повышенной пористостью пород, с наличием в них трещин. Здесь могут усиливаться восходящие потоки воздуха и наблюдаться эманации радиоактивных газов, влажность этих участков поверхности может существенно отличаться от соседствующих. Сле­довательно, именно над этими территориями можно ожидать повышенных значений грозовой активности.

В работах [27; 28] представлены результаты исследования влияния на территориальную неоднородность грозовой активности следующих факторов: климатических характеристик температуры и влажности воздуха, орографии, величины аномалий геофизических полей (магнитного и гравитационного), температурно-влажностных свойств подстилающей поверхности. Оказалось:

· С увеличением высоты станций над уровнем моря грозовая активность увеличивается только внутри тех территорий, где диапазон изменения высот составляет от 300 м до 1000 м.

· Высокие значения грозовой активности совпадают с максимальными отрицательными значениями аномалий силы тяжести на территориях Казахстана и Германии.

· Формированию очагов повышенной грозовой активности на равнинных территориях способствует наличие очагов оптимального сочетания средних многолетних значений температуры и влажности воздуха.

· Характеристики влажности почвы связаны значимой корреляционной зависимостью с пространственным распределением средних многолетних значений грозовой активности.

· Зависимость грозовой активности от температурных характеристик подстилающей поверхности также достаточно велика и статистически значима.

В целом неравномерность грозовой активности над любыми территориями обусловлена совместным влиянием нескольких факторов: характеристиками подстилающей поверхности (орографией и температурно-влажностными), структурно-геологической неоднородностью земной коры и неоднородностью климатических характеристик температурно-влажностного состояния атмосферы. Внутри холмистых территорий важнейшим фактором, формирующим очаговость пространственного распределения грозовой активности, является орография. Внутри равнинных – различия температурно-влажностного состояния подстилающей поверхности. Вторым по значимости фактором на всех террито­риях является наличие геофизических неоднородностей в структуре под­стилающей поверхности.

Дата добавления: 2015-09-07 ; просмотров: 5547 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Опасные для авиации явления погоды

Содержание

Туман

Это такое явление, когда взвешенные в воздухе капли воды или кристаллы льда уменьшают дальность видимости до 1 км и менее.

Кроме указанных выше основных наиболее часто встречающихся видов туманов наблюдаются и другие, как-то:

Радиационный туман

Образуется вследствие выхолаживания поверхности Земли и прилегающего к ней слоя воздуха, при этом возникает инверсия температуры и при достаточной влажности воздуха образуется приземный туман, называемый радиационным. Наибольшая повторяемость радиационных туманов приходится на ночные часы, когда нет притока солнечной радиации, а земная поверхность и воздух теряют тепло. Радиационный туман отличается наибольшей плотностью у поверхности Земли и видимость здесь часто ухудшается до нескольких десятков метров. С высотой плотность убывает, и с высоты полета Земля сквозь него видна хорошо. С восходом Солнца (началом прогрева) радиационный туман, как правило, рассеивается.

Адвективный туман

Адвективный туман может образовываться в любую часть суток и сохраняться в течение длительного времени.

Фронтальные туманы

Туманы, возникающие на атмосферных фронтах. Они бывают трех типов: предфронтальные, фронтальные и зафронтальные.

Предфронтальный туман

Образуется вследствие насыщения влагой холодного воздуха, находящегося под фронтальной поверхностью.

Наиболее благоприятные условия для образования предфронтального тумана, когда температура выпадающего дождя значительно выше температуры холодного воздуха, располагающегося вблизи поверхности Земли.

Фронтальный туман

Возникает непосредственно при прохождении фронта. Такой туман представляет собой фронтальную облачную систему, распространяющуюся до поверхности Земли, особенно часто наблюдается при прохождении фронтов над возвышенностями.

3афронтальный туман

Образуется непосредственно после прохождения теплого фронта или теплой окклюзии. Образование зафронтального тумана мало чем отличается от условий образования адвективного тумана.

Туманы испарения

Возникают в результате притока водяного пара за счет испарения с водной поверхности в перемещающийся над ней воздух, температура которого на 8-10° и более ниже температуры воды. Такие туманы образуются в полярных областях при перемещении холодного воздуха со снежной поверхности на открытую воду (полынью, незамерзающий залив, открытый участок моря). Аналогично туманы испарения образуются над реками и озерами осенью.

Метель

Перенос снега над поверхностью Земли ветром достаточной силы. Различают три вида метели: поземка, низовая метель и общая метель.

Поземка

Перенос сухого снега ветром непосредственно над поверхностью снежного покрова. Поземка возникает при скорости ветра 4-6 м/с, при этом снег поднимается до высоты в несколько десятков сантиметров.

Низовая метель

Явление, схожее с поземкой, с той лишь разницей, что она бывает при более сильном ветре. При низовой метели снег поднимается до высоты в несколько метров.

Как поземка, так и низовая метель ухудшают видимость в самых нижних слоях атмосферы.

Общая метель

Характеризуется сильным ветром, поднимающим снег с земной поверхности, и выпадением снега из облаков.

Пыльная буря

Явление, аналогичное низовой метели, но с той лишь разницей, что пыльная буря бывает в южных степях и пустынях преимущественно летом, когда сильным ветром с поверхности Земли поднимаются частицы пеока или пыли, которые, замутняя атмосферу, резко ухудшают видимость.

Гроза

Внутримассовые грозы

Образуются во влажном и неустойчивом воздухе внутри воздушных масс. Наиболее распространенной внутримассовой грозой является тепловая, или местная гроза, возникающая в результате нагрева воздуха от подстилающей поверхности. Тепловые грозы возникают летом после полудня и рассеиваются вечером. Внутримассовые грозы обычно возникают изолированно или располагаются друг от друга на расстоянии 20-30 км, поэтому самолет их может свободно обходить.

Фронтальные грозы

Развиваются на холодных и теплых фронтах, а также на фронтах окклюзии.

Опасность для самолета и экипажа представляют мощные восходящие и нисходящие потоки воздуха внутри кучево-дождевых облаков и в непосредственной близости к ним, а также возможный разряд молнии в самолет.

Молния

В кучево-дождевых облаках могут создаваться электрические поля огромной напряженности, вследствие чего происходят искровые электрические разряды, которые называют молниями. Разряды бывают между облаком и Землей, между различными облаками и между отдельными частями одного и того же облака.

Большое напряжение электрического поля в облаке возникает в результате электризации облачных элементов и разделения разноименных зарядов. Эти процессы весьма разнообразны и происходят при изменении агрегатного состояния воды в облаках (замерзание, таяние и т. д.), а также при разбрызгивании капель воды и от разламывания ледяных кристаллов при их падении в воздухе.

Поскольку кучево-дождевые облака смешанные, то в них постоянно идет процесс образования зарядов за счет таяния ледяных кристаллов, сублимации, намерзания переохлажденных капель на кристаллы и т. д.

Указанные процессы приводят к образованию в грозовом облаке огромных объемных электрических зарядов. В верхней части облака, состоящей из мелких ледяных кристаллов, возникает объемный положительный заряд. Другой такой заряд образуется в той части облака, где имеют место наибольшие скорости вертикальных движений воздуха и интенсивные осадки, создающие наиболее благоприятные условия для дробления крупных капель. Центральная часть этого объемного положительного заряда располагается вблизи изотермы 0°С. Остальная часть облака, в которой преобладают мелкие капли, оказывается заряженной отрицательно.

Электрические разряды (молнии) возникают в том случае, когда напряженность электрического поля между объемными зарядами достигает пробивного значения, равного около 1 000 000 В на 1 м. Сила тока в молнии очень велика и составляет (1-1,5) 10 4 А и даже больше.

В природе наблюдается несколько видов молний. Однако наиболее часто встречаются линейные, реже плоские и шаровые молнии.

Линейная молния

Представляет собой искровой электрический заряд в виде искривленной линии, иногда с многочисленными ответвлениями. Длина такой молнии чаще всего составляет 2-3 км, но отмечались случаи, когда длина молнии достигала 20-30 км.

Плоская молния

Представляет собой разряд, охватывающий значительную часть облака, и состоит он, по-видимому, из тихих разрядов, испускаемых отдельными капельками.

Шаровая молния

Представляет собой шар, который ярко светится белым или красноватым цветом с оранжевым оттенком. Диаметр шаровой молнии обычно составляет несколько десятков сантиметров. В литературе встречаются описания шаровых молний, диаметр которых достигал значительных размеров.

Осадки, выпадающие в теплое время года из мощных кучево-дождевых облаков в виде частичек плотного льда различных, иногда очень крупных размеров. Град обычно бывает при грозе вместе с ливневым дождем.

Шквал

Внезапное и кратковременное усиление скорости ветра (более 15 м/с), сопровождающееся изменением его направления. Шквалы возникают в передней части кучево-дождевых (грозовых) облаков.

Обледенение

Отложение льда на обтекаемых частях самолета, силовых установках и внешних деталях его специального оборудования (антенны и т. д.) при полете в воздухе, содержащем переохлажденные капли воды.

Форма ледяных отложений может быть весьма разнообразной. Различают несколько основных форм: профильную, желобковую и ледяные отложения неопределенной формы.

Опасность обледенения связана с тем, что в результате отложения льда искажается форма профиля крыла и оперения, что приводит к ухудшению аэродинамических качеств самолета, к потере его устойчивости.

Влияние воздушной скорости полета на интенсивность обледенения сказывается двояко. С одной стороны, увеличение скорости приводит к росту интенсивности обледенения, так как в единицу времени на лобовых частях самолета будет осаждаться больше водяных капель. С другой стороны, при увеличении скорости полета температура поверхности самолета вследствие кинетического нагрева может оказаться положительной, и самолет не будет подвергаться обледенению. Наибольший нагрев наблюдается на передней кромке крыла и лобовых частях самолета, где почти вся кинетическая энергия превращается в тепловую.

Различают три основных вида обледенения:

Существуют активные и пассивные способы борьбы с обледенением.

Прозрачный лед

Образуется при полете в облаках, в которых много крупных переохлажденных капель, или в зоне переохлажденного дождя. Этот вид обледенения обычно имеет гладкую поверхность, нарастает быстро и главным образом на передней кромке крыла, носовом коке и винтах.

Матовый лед

Возникает при полете в смешанных облаках, где наряду с мелкими переохлажденными каплями имеются ледяные кристаллы и снежинки. Этот вид обледенения имеет шероховатую поверхность и неправильные формы отложения. Нарастание матового льда происходит неравномерно, поэтому такой вид обледенения является самым опасным.

Белый молочный лед

Откладывается при полете в облаках, состоящих из мелких переохлажденных капель. Представляет собой сравнительно ровный покров пористой структуры. Держится на поверхности непрочно и при вибрациях может скалываться.

Изморозь

Легкий кристаллический налет. Образуется в результате сублимации водяного пара на значительно переохлажденной поверхности самолета. Под действием вибрации и встречного воздушного потока легко скалывается и сдувается. Этот вид обледенения может образоваться при полете вне облаков, когда самолет попадает из более холодного в менее холодный и влажный воздух, имеющий также температуру ниже 0° С, например при быстром снижении. Опасность этого вида заключается в том, что лед откладывается на лобовом остеклении кабины и ухудшает обзор, что особенно опасно при посадке.

Активный способ борьбы с обледенением

Предусматривает применение противообледенительных устройств и является наиболее эффективным.

Для современных реактивных самолетов при горизонтальном полете активным способом борьбы с обледенением может явиться также маневр скоростью. Особенно эффективен этот способ для самолетов, имеющих большой запас скорости. При начавшемся обледенении форсирование скорости увеличивает кинетический нагрев. Когда температура в возмущенном потоке и на поверхности самолета оказывается положительной, удаление образовавшегося льда происходит в течение 1- 2 мин.

Полеты в зонах обледенения на вертолетах и самолетах, не имеющих противообледенительных устройств, запрещаются.

Пассивный способ борьбы с обледенением

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *