Что такое фракционный состав нефти
ХИМИЯ НЕФТИ
ФРАКЦИОННЫЙ СОСТАВ НЕФТИ
Определения
. Для всех индивидуальных веществ температура кипения при данном давлении является физической константой. Так как нефть представляет собой смесь большого числа органических веществ, обладающих различным давлением насыщенных паров, то говорить о температуре кипения нефти нельзя.
В условиях лабораторной перегонки нефти или нефтепродуктов при постепенно повышающейся температуре отдельные компоненты отгоняются в порядке возрастания их температур кипения, или, что то же самое, в порядке уменьшения давления их насыщенных паров. Следовательно, нефть и ее продукты характеризуется не температурами кипения, а температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки и судят о фракционном составе.
называется доля нефти, выкипающая в определенном интервале температур. Нефти выкипают в очень широком интервале температур, в основном, от 28 до 520-540°С. Фракционный состав нефти определяется стандартным методом (ГОСТ 2177–82) по результатам лабораторных испытаний при разделении соединений по температурам кипения методом фракционирования (разгонки) нефти, отгона или смеси соединений на установках АВТ (атмосферно-вакуумная трубчатка).
фракции считают температуру падения первой капли сконденсированных паров.
фракции считают температуру, при которой испарение фракции прекращается.
Нефтяные фракции
В зависимости от температурных диапазонов выкипания нефтяные фракции (продукты разделения нефти) подразделяют на:
Определение фракционного состава
Фракционный состав определяется стандартным методом по ГОСТ 2177-99 (метод аналогичен распространенной за рубежом разгонке по Энглеру), а также различными способами с применением лабораторных колонок. Для пересчета температур выкипания, полученных стандартной перегонкой (Тгост) в истинные температуры кипения (Титк) предложена формула:
При нагреве такой сложной смеси, как нефть, в паровую фазу прежде всего переходят низкокипящие компоненты, обладающие высокой летучестью. Частично с ними уходят высококипящие компоненты, однако концентрация низкокипящего компонента в парах всегда больше, чем в кипящей жидкости. По мере отгона низкокипящих компонентов остаток обогащается высококипящими. Поскольку давление насыщенных паров высококипящих компонентов при данной температуре ниже внешнего давления, кипение в конечном счете может прекратиться. Для того чтобы сделать кипение безостановочным, жидкий остаток непрерывно подогревают. При этом в пары переходят все новые и новые компоненты со всевозрастающими температурами кипения. Отходящие пары конденсируются, образовавшийся конденсат отбирают по интервалам температур кипения компонентов в виде отдельных нефтяных фракций.
Перегонку нефти и нефтепродуктов с целью разделения на фракции можно осуществлять с постепенным либо с однократным испарением. При перегонке с постепенным испарением образующиеся пары непрерывно отводят из перегонного аппарата, они конденсируются и охлаждаются в конденсаторе-холодильнике и собираются в приемник в виде жидких фракций.
Еще более четкое разделение происходит при перегонке с ректификацией. Аппарат для такой перегонки состоит из перегонной колбы, ректификационной колонки, конденсатора-холодильника и приемника.
Определение фракционного состава нефтей и нефтяных фракций проводится в лабораторных условиях. Наибольшее распространение в лабораторной практике получили следующие виды перегонки.
Фракционный состав нефти и нефтепродуктов
Виды и свойства нефтяных фракций
Фракционный состав нефти определяется согласно российскому стандарту перегонки или ректификации, который соответствует разгонке Эглера. В основе разделение сложного состава углеводных газов на промежуточные элементы. На основе кипения высоких температур классифицируется 3 вида переработки нефти.
В процессе определения фракционного состава нефти и нефтепродуктов, а также их свойств, происходит разделение на следующие виды фракций:
Нефтяные фракции
В зависимости от температурных диапазонов выкипания нефтяные фракции (продукты разделения нефти) подразделяют на:
Фракции также делят на светлые (сюда относят легкие и средние) и темные или мазуты (это тяжелые фракции).
Фракции нефти таблица
А теперь подробнее об основных видах нефтяных фракций:
Петролейная фракция
Эфир или масло Шервуда — это бесцветная жидкость, которая состоит из пентана и гексана. Сразу испаряется при невысоких температурах. Является растворителем для создания экстрактов, топливо для зажигалок, горелок. Получается при температурах до + 100°С.
Бензиновая фракция
Бензиновая фракция нефти построена на сложной схеме углеродных соединений, которые выкипают при температуре + 140°С. Основное применение — используется для получения топлива к двигателям внутреннего сгорания и в качестве сырья в нефтехимии. В основе бензиновой фракции парафиновые вещества: метилциклопентан, циклогексан, метилциклогексан. Бензин содержит жидкие алканы в составе- природные, попутные, газообразные. Они подразделяются также на разветвленные и неразветвленные. Состав зависит от качественного соотношения компонентов сырья. Это говорит о том, что хороший бензин получается далеко не их всех сортов нефти. Ценность вида в том, что в процессе распада на соединения, образуются ароматические углеводороды, доля которых в сырьевой массе катастрофически мала.
Лигроиновая фракция
Подвид включает в себя тяжелые элементы. Насыщенность ароматическими углеводородами больше, чем у других соединений. Является компонентом для производства товарных бензинов, осветительных керосинов, реактивного топлива, органическим растворителем. Выступает как наполнитель бытовой техники. Химический состав: полициклические, циклические и ненасыщенные углеводороды. Отличается наличие серы, процент от общей массы которой зависит от месторождения, уровня залегания и качества сырьевого продукта.
Керосиновая фракция
Керосиновая фракция нефти — в первую очередь это топливо для реактивных двигателей. Используется в производстве лакокрасочной продукции и добавляется как растворитель в краску для стен и полов. Выступает сырьем в процессах синтеза веществ. Соединения углеводов с повышенным содержанием парафина. Наблюдается низкое содержание ароматических углеводов. Керосиновая фракция выделяется при атмосферной перегонке в пределах + 220°С.
Дизельная фракция
Мазут
Качественный состав смеси: масла смол, органические соединения с микроэлементами. Углеводородные компоненты: асфальтен, карбен, карбоид. При вакуумной перегонке из мазута производится гудрон, парафин, технические масла. Основное применение — жидкое топливо для котельных за характеристики вязкости. Топочный мазут подразделяется на 3 основных вида: флотский, средне-котельный и тяжелый. Последний применяется на ТЭЦ, средний вид — в котельных предприятий. Флотский — неотъемлемая часть работы судоходного транспорта.
Гудрон
Качество компонентов в процентном соотношении определяется так:
Вакуумный гудрон получается в результате завершения всех процессов разделения и перегонки. Температура выкипания + 500°С. На выходе получается вязкая консистенция черного цвета. Жидкостный состав используется в дорожном строительстве. Из него производят битумы для кровельных материалов. Гудрон необходим для создания кокса — продукта стратегического назначения. Компонент используется в изготовлении котельного топлива. В нем сконцентрирован самый большой процент тяжелых металлов, содержащихся в нефти.
Сырьевые показатели нефтепродуктов зависят от глубины залегания и вида месторождения. Это учитывается при формировании фракций нефти и достижения процентного соотношения компонентов.
Фракционный Состав Нефти
Нефть представляет собой многокомпонентную непрерывную смесь углеводородов и гетероатомных соединений. Разделить такую смесь на индивидуальные соединения с помощью одних только физических методов, в частности, перегонкой, невозможно. Поэтому нефть сначала разделяют на отдельные фракции или дистилляты, которые являются менее сложными смесями и имеют определенные интервалы температур кипения.
Нефтяная фракция – группа соединений, входящих в состав нефти, и выкипающих в определенном интервале температур.
При перегонке нефти получается следущие фракции:
Состав фракций определяет направление дальнейшего их использования. В большинстве случаев фракции, полученные при первичной переработке нефти подвергаются более глубокой вторичной переработке, для получения необходимых нефтепродуктов конкретного состава.
Ниже приведена таблица общего состава фракций, некоторые физические свойства и области применения:
Фракция | Состав | ©PetroDigest.ru | Физические свойства | Применение |
---|---|---|---|---|
Петролейная (петролейный эфир, нефтяной эфир, масло Шервуда) | Пентан, гексан |
Фij=f(Мi, химическая формула). | (1.1) |
Из (1.1) следует, что все стандартные свойства оказываются взаимосвязанными и могут быть выражены друг через друга. Так молярная масса какого либо углеводорода (псевдокомпонента) может быть выражена в виде функции от его стандартных свойств: температуры кипения, плотности, показателя преломления и прочих свойств, а также от комбинации этих свойств. В качестве примера можно привести формулы Б. П. Войнова [3], Крега [4] и Мамедова [4] для расчета молекулярной массы углеводородов:
Поэтому количество вариантов расчета ТФС псевдокомпонентов оказывается достаточно большим, что в определенной мере затрудняет их практическое использование.
Для расчета ФХС широких нефтяных фракций, состоящих из нескольких псевдокомпонентов, используется правило аддитивности, т.е. вклад каждой узкой фракции в свойства более широкой фракции определяется относительной концентрацией узкой фракции в более широкой.
В УМП процедуры расчета ФХС для непрерывных смесей автоматизированы: пользователь в соответствии с принятой температурной разбивкой кривой ИТК на псевдокомпоненты задает пределы выкипания отдельных псевдокомпонентов (отдельных узких фракций), после чего заполняет спецификацию для каждого выбранного псевдокомпонента, задавая его характеристические свойства, известные пользователю.
В качестве минимально необходимой информации, как уже указывалось, должна быть задана средняя температура кипения псевдокомпонента, а в качестве дополнительной задаются свойства (плотность, показатель преломления и т.д.), известные пользователю. Чем более полно определена эта информация, тем точнее будет охарактеризован каждый псевдокомпонент, а значит, и точнее будут результаты последующего моделирования. Для примера на рис. 1.7 приведены кривые распределения характеристических свойств (tср, p, n) для прямогонного гидроочищенного бензина [2].
Рис. 1.7. Кривые распределения температуры кипения (tср), плотности (p) и показателя преломления (n) фракции прямогонного гидроочищенного бензина
В соответствии с принятым условием достаточно плавного изменения характеристических свойств при изменении температуры кипения отдельных компонентов (число индивидуальных компонентов очень велико) зависимости всех свойств от доли отгона вещества (или от температуры отгона) должны быть также непрерывными.
На основе данной информации могут быть рассчитаны все основные свойства (Tкр, Pкр, Zкр, энтальпийные характеристики) как отдельных псевдокомпонентов, так и среднеинтегральные значения этих свойств для фракции в целом, а также определены вероятные брутто-формулы гипотетических псевдокомпонентов [2].По сути такой же подход используется и при взаимном пересчете кривых ОИ и ИТК.
При этом наличие даже неполной информации (только отдельных свойств для отдельных фракций даже в ограниченном диапазоне изменения доли отгона) позволяет заметно повысить адекватность обобщающей информации. Так, для примера, приведенного на рис. 1.4, учет только одного свойства по фракции в целом (плотность мазута) заметно уточняет вид конечной характеристики (кривая ИТК).
- расчет мощности котла для отопления частного дома калькулятор газового по площади
- можно ли вправлять позвонки детям