Что такое формальная логика в информатике

Логика в информатике

Содержание

Логика в информатике

Логика в информатике как учебной дисциплине была введена в самых первых учебниках информатики Каймина в 1985 году и в учебник информатики Каймина для средних школ в 1987-89гг. Парадокс в том, что первых школьных учебниках информатики Ершова, Кушниренко и многих действующих учебниках информатики для школ и вузов логика отсутствует.

В 2004 году в России были введены Единые экзамены ЕГЭ по информатике, в содержании которых изучение и знание основ логики стало обязательным. Логика в информатике используется в поиске информации в Интернет, в базах данных, в базах знаний, в алгоритмах, алгоритмизации и во всех языках программирования.

Наибольшее значение логика приобретает в анализе алгоритмов и программ при решении задач на ЭВМ, когда от результатов решения задач зависят оценки на экзаменах или победа на олимпиадах по информатике или программированию.

Логика в программировании

Серьёзнейшей проблемой для информатики и компьютерных наук является наличие ошибок в алгоритмах и программах, публикуемых в учебниках и учебных пособиях, а также неумение преподавателями и учителями информатики выявлять и исправлять ошибки в алгоритмах и программах, составляемых учащимися.

Тестирование программ может выявить наличие ошибок в программах, но не может гарантировать их отсутствие. Гарантии отсутствия ошибок в алгоритмах и программах могут дать только доказательства их правильности. Алгоритм не содержит ошибок, если он дает правильные решения для всех допустимых данных.

Единственный путь для преодоления этих проблем является изучение систематическим методам составления алгоритмов и программ с одновременным анализом их правильности в рамках доказательного программирования с самого начала обучения основам алгоритмизации и программирования.

Сложность для преподавателей информатики и профессиональных программистов заключается в том, что они должны уметь писать не только алгоритмы и программы без ошибок, но и при этом писать доказательства правильности своих алгоритмов и программ. Что сейчас не умеют делать ни математики, ни программисты, ни преподаватели информатики.

В результате «профессиональные» программисты пишут программы с большим числом ошибок, которые они не могут ни выявить, ни исправить. Массированное тестирование программ на ЭВМ приносит программистам несомненную пользу, однако не дает гарантий полного избавления от ошибок.

Практика применения и доказательных методов программирования показала, что эта технология вполне доступна студентам математических факультетов, которым вполне по силам написание доказательств правильности алгоритмов, после проверки и тестирования программ на ЭВМ.

Наибольший эффект в освоении технологий доказательного программирования наблюдается на экзаманех по информатике в математических и экономических вузах, где студенты справляются и с решением задач на ЭВМ и написанием доказательств правильности алгоритмов и программ.

Интуитивные методы анализа правильности алгоритмов и программ характерны для олимпиад по информатике и программированию, где победителями и призёрами становятся те студенты, которые освоили технику тестирования программ на ЭВМ и составления алгоритмов и программ без ошибок.

Логика и искусственный интеллект

В информатике проблемы искусственного интеллекта рассматриваются с позиций проектирования экспертных систем и баз знаний. Под базами знаний понимается совокупность данных и правил вывода, допускающих логический вывод и осмысленную обработку информации.

В целом исследования проблем искусственного интеллекта в информатике направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы подготовки пользователей и разработчиков таких систем.

Логический подход к созданию систем искусственного интеллекта направлен на создание экспертных систем с логическими моделями баз знаний с использованием языка предикатов.

Учебной моделью систем искусственного интеллекта в 1980-х годах был принят язык и система логического программирования Пролог, используемый для создания баз знаний и моделей экспертных систем на ЭВМ.

Базы знаний на языке Пролог представляют наборы фактов и правил логического вывода, записанных языка логических предикатов с использованием лексики русского языка, хорошо понятно русским, казахам, украинцам — всем русскоязычным людям. Известны случаи написания программ и баз знаний с использованием русскоязычных интерпретаторов Пролога на казахском языке.

Логическая модель баз знаний позволяет записывать не только конкретные сведения и данные в форме фактов на языке Пролог, но и обобщенные сведения с помощью правил и процедур логического вывода и в том числе логических правил определения понятий, выражающих определенные знания как конкретные и обобщенные сведения.

В целом исследования проблем искусственного интеллекта в информатике в рамках логического подхода к проектированию баз знаний и экспертных систем направлено на создание, развитие и эксплуатацию интеллектуальных информационных систем, включая вопросы обучения студентов и школьников, а также подготовки пользователей и разработчиков таких интеллектуальных информационных систем

Логика и логическое программирование

Логическое программирование’ — парадигма программирования, основанная на автоматическом доказательстве теорем, с использованием механизмов логического вывода информации на основе заданных фактов и правил вывода.Язык Пролог и логическое программирование и широко используются для создания баз знаний и экспертных систем и исследований в сфере искусственного интеллекта на основе логических моделей баз знаний и логических процедур вывода и принятия решений.

Язык и система логического программирования Пролог основаны на языке исчисления предикатов, представляющей собой подмножество логики первого порядка. Основными в языке Пролог являются понятия фактов и правил логического вывода, а также запросы на поиск и вывод информации в базах знаний.

Процедуры логического вывода и принятия решений, на основе которых система логического программирования Пролог делает логические выводы и дает осмысленные ответы. Факты в языке Пролог описываются логическими предикатами с конкретными значениями. Правила в Прологе записываются в форме правил логического вывода с логическими заключениями и списком логических условий.

Логика в базах данных

База данных — объективная форма представления и организации совокупности данных, систематизированных таким образом, чтобы эти данные могли быть найдены и обработаны с помощью ЭВМ. Базы данных применяются во всех сферах человеческой деятельности, сопряжённых с учётом и хранением информации.

Разделяют плоские базы данных, в которых вся информация располагается в единственной таблице, каждая запись в которой содержит идентификатор конкретного объекта и реляционные базы данных, состоящие из нескольких таблиц, связь между которыми устанавливается с помощью совпадающих значений одноимённых полей.

реляционная модель баз данных де-факто является стандартом. В реляционных базах данные хранятся в виде таблиц, состоящих из строк и столбцов. Каждая таблица имеет собственный, заранее определенный набор именованных полей. Столбцы таблиц реляционной базы могут содержать скалярные данные фиксированного типа, например числа, строки или даты.

Поиск информации в реляционных базах данных проводится с помощью языка запросов SQL (англ. Structured Query Language — язык структурированных запросов) — универсальный компьютерный язык, применяемый для создания, поиска и модификации информации в базах данных.

Язык запросов SQL к реляционным базам данных состоит из операторов определения, поиска и обработки информации в базах данных. Операторы поиска информации содержать логические условия поиска, которые могут быть простыми и сложно составными.

Источник

Памятка «Основы формальной логики в информатике»

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Памятка «Основы формальной логики в информатике» содержит необходимый минимум информации для учеников 8 класса, которая понадобится им при изучении элементов алгебры логики. Она содержит основные определения и законы по теме.

Тема «Элементы алгебры логики» является одной из наиболее сложных для учеников при изучении всего школьного курса информатики. Она тяжело воспринимается учениками отчасти потому, что содержит большое количество теоретического материала, который сложно воспринимается и запоминается. Памятка «Основы формальной логики в информатике» содержит основной материал по данной теме, систематизированный и изложенный в краткой форме так, чтобы ученик, открыв памятку на соответствующей странице, мог быстро освежить в памяти основные моменты темы. Данная памятка позволит вам сократить время, затрачиваемое на повторение материала, а системно представленный материал и иллюстрации упростят процесс повторения для учеников.

Элементы алгебры логики встречаются не только при изучении данной темы в 8 классе, но и в течение всего школьного курса информатики. Например, при изучении основ алгоритмизации и программирования, электронных таблиц и систем управления базами данных. При изучении каждой из этих тем у учащихся возникает необходимость освежить свои знания об основных логических операциях и законах.

Если ученику нужно быстро повторить материал по теме, достаточно открыть соответствующую страницу памятки, содержащую необходимый ему закон, определение или логическую операцию.

Источник

Законы логики на уроках информатики и ИКТ

Урок по информатике рассчитан на учащихся 10-х классов общеобразовательной школы, в учебном плане которой входит раздел «Алгебра логики». Учащимся очень нелегко дается эта тема, поэтому мне, как учителю, захотелось заинтересовать их в изучении законов логики, упрощении логических выражений и с интересом подойти к решению логических задач. В обычной форме давать уроки по этой теме нудно и хлопотно, да и ребятам не всегда понятны некоторые определения. В связи с предоставлением информационного пространства, у меня появилась возможность выкладывать свои уроки в оболочке «learning». Учащиеся, зарегистрировавшись в ней, могут в свое свободное время посещать этот курс и перечитывать то, что было непонятно на уроке. Некоторые учащиеся, пропустив уроки по болезни, наверстывают дома или в школе пропущенную тему и всегда готовы к следующему уроку. Такая форма преподавания очень устроила многих ребят и те законы, которые им были непонятны, теперь в компьютерном виде ими усваиваются гораздо легче и быстрее. Предлагаю один из таких уроков информатики, который проводится интегративно с ИКТ.

1. Объяснение нового материала

Законы формальной логики

Наиболее простые и необходимые истинные связи между мыслями выражаются в основных законах формальной логики. Таковыми являются законы тождества, непротиворечия, исключенного третьего, достаточного основания.

Эти законы являются основными потому, что в логике они играют особо важную роль, являются наиболее общими. Они позволяют упрощать логические выражения и строить умозаключения и доказательства. Первые три из вышеперечисленных законов были выявлены и сформулированы Аристотелем, а закон достаточного основания — Г. Лейбницем.

Закон тождества: в процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе.

Закон непротиворечия: невозможно, чтобы одно и то оке в одно то же время было и не было присуще одному и тому же в одном и том же отношении. То есть невозможно что-либо одновременно утверждать и отрицать.

Закон исключенного третьего: из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано.

Закон достаточного основания: всякая истинная мысль должна быть достаточно обоснована.

Последний закон говорит о том, что доказательство чего-либо предполагает обоснование именно и только истинных мыслей. Ложные же мысли доказать нельзя. Есть хорошая латинская пословица: «Ошибаться свойственно всякому человеку, но настаивать на ошибке свойственно только глупцу». Формулы этого закона нет, так как он имеет только содержательный характер. В качестве аргументов для подтверждения истинной мысли могут быть использованы истинные суждения, фактический материал, статистические данные, законы науки, аксиомы, доказанные теоремы.

Законы алгебры высказываний

Алгебра высказываний (алгебра логики) — раздел математической логики, изучающий логические операции над высказываниями и правила преобразования сложных высказываний.

При решении многих логических задач часто приходится упрощать формулы, полученные при формализации их условий. Упрощение формул в алгебре высказываний производится на основе эквивалентных преобразований, опирающихся на основные логические законы.

Законы алгебры высказываний (алгебры логики) — это тавтологии.

Иногда эти законы называются теоремами.

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул. Среди законов особо выделяются такие, которые содержат одну переменную.

Первые четыре из приведенных ниже законов являются основными законами алгебры высказываний.

Всякое понятие и суждение тождественно самому себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. При нарушении этого закона возможны логические ошибки.

Например, рассуждение Правильно говорят, что язык до Киева доведет, а я купил вчера копченый язык, значит, теперь смело могу идти в Киев неверно, так как первое и второе слова «язык» обозначают разные понятия.

В рассуждении: Движение вечно. Хождение в школу — движение. Следовательно, хождение в школу вечно слово «движение» используется в двух разных смыслах (первое — в философском смысле — как атрибут материи, второе — в обыденном смысле — как действие по перемещению в пространстве), что приводит к ложному выводу.

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Не могут быть одновременно истинными суждение и его отрицание. То есть если высказывание А — истинно, то его отрицание не А должно быть ложным (и наоборот). Тогда их произведение будет всегда ложным.

Именно это равенство часто используется при упрощении сложных логических выражений.

Иногда этот закон формулируется так: два противоречащих друг другу высказывания не могут быть одновременно истинными. Примеры невыполнения закона непротиворечия:

1. На Марсе есть жизнь и на Марсе жизни нет.

2. Оля окончила среднюю школу и учится в X классе.

Закон исключенного третьего:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

В один и тот же момент времени высказывание может быть либо истинным, либо ложным, третьего не дано. Истинно либо А, либо не А. Примеры выполнения закона исключенного третьего:

1. Число 12345 либо четное, либо нечетное, третьего не дано.

2. Предприятие работает убыточно или безубыточно.

3. Эта жидкость является или не является кислотой.

Закон исключенного третьего не является законом, признаваемым всеми логиками в качестве универсального закона логики. Этот закон применяется там, где познание имеет дело с жесткой ситуацией: «либо — либо», «истина—ложь». Там же, где встречается неопределенность (например, в рассуждениях о будущем), закон исключенного третьего часто не может быть применен.

Рассмотрим следующее высказывание: Это предложение ложно. Оно не может быть истинным, потому что в нем утверждается, что оно ложно. Но оно не может быть и ложным, потому что тогда оно было бы истинным. Это высказывание не истинно и не ложно, а потому нарушается закон исключенного третьего.

Парадокс (греч. paradoxos — неожиданный, странный) в этом примере возникает из-за того, что предложение ссылается само на себя. Другим известным парадоксом является задача о парикмахере: В одном городе парикмахер стрижет волосы всем жителям, кроме тех, кто стрижет себя сам. Кто стрижет волосы парикмахеру? В логике из-за ее формальности нет возможности получить форму такого ссылающегося самого на себя высказывания. Это еще раз подтверждает мысль о том, что с помощью алгебры логики нельзя выразить все возможные мысли и доводы. Покажем, как на основании определения эквивалентности высказываний могут быть получены остальные законы алгебры высказываний.

Например, определим, чему эквивалентно (равносильно) А (двойное отрицание А, т. е. отрицание отрицания А). Для этого построим таблицу истинности:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

По определению равносильности мы должны найти тот столбец, значения которого совпадают со значениями столбца А. Таким будет столбец А.

Таким образом, мы можем сформулировать закон двойного отрицания:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Если отрицать дважды некоторое высказывание, то в результате получается исходное высказывание. Например, высказывание А = Матроскинкот эквивалентно высказыванию А = Неверно, что Матроскин не кот.

Аналогичным образом можно вывести и проверить следующие законы:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Операнды А и В в операциях дизъюнкции и конъюнкции можно менять местами.

A v(B v C) = (A v B) v C;

Если в выражении используется только операция дизъюнкции или только операция конъюнкции, то можно пренебрегать скобками или произвольно их расставлять.

A v (B & C) = (A v B) &(A v C)

(дистрибутивность дизъюнкции
относительно конъюнкции)

А & (B v C) = (A & B) v (А & C)

(дистрибутивность конъюнкции
относительно дизъюнкции)

Закон дистрибутивности конъюнкции относительно дизъюнкции ана­логичен дистрибутивному закону в алгебре, а закон дистрибутивности дизъюнкции относительно конъюнкции аналога не имеет, он справедлив только в логике. Поэтому необходимо его доказать. Доказательство удобнее всего провести с помощью таблицы истинности:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Проведите доказательство законов поглощения самостоятельно.

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Словесные формулировки законов де Моргана:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Мнемоническое правило: в левой части тождества операция отрицания стоит над всем высказыванием. В правой части она как бы разрывается и отрицание стоит над каждым из простых высказываний, но одновременно меняется операция: дизъюнкция на конъюнкцию и наоборот.

Примеры выполнения закона де Моргана:

1) Высказывание Неверно, что я знаю арабский или китайский язык тождественно высказыванию Я не знаю арабского языка и не знаю китайского языка.

2) Высказывание Неверно, что я выучил урок и получил по нему двойку тождественно высказыванию Или я не выучил урок, или я не получил по нему двойку.

Замена операций импликации и эквивалентности

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка программирования. Однако для решения многих задач эти операции необходимы. Существуют правила замены данных операций на последовательности операций отрицания, дизъюнкции и конъюнкции.

Так, заменить операцию импликации можно в соответствии со следующим правилом:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Для замены операции эквивалентности существует два правила:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

В справедливости данных формул легко убедиться, построив таблицы истинности для правой и левой частей обоих тождеств.

Знание правил замены операций импликации и эквивалентности помогает, например, правильно построить отрицание импликации.

Рассмотрим следующий пример.

Пусть дано высказывание:

Е = Неверно, что если я выиграю конкурс, то получу приз.

Пусть А = Я выиграю конкурс,

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Отсюда, Е = Я выиграю конкурс, но приз не получу.

Интерес представляют и следующие правила:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Доказать их справедливость можно также с помощью таблиц истинности.

Интересно их выражение на естественном языке.

Если Винни-Пух съел мед, то он сыт

Если Винни-Пух не сыт, то меда он не ел.

Задание: придумайте фразы-примеры на данные правила.

2. Основные понятия и определения в Приложении 1

3. Материал для любознательных в Приложении 2

4. Домашнее задание

1) Выучить законы логики, используя курс «Алгебры логики», размещенный в информационном пространстве (www.learning.9151394.ru).

2) Проверить на ПК доказательство законов де Моргана, построив таблицу истинности.

Источник

Логика: предикатная, формальная и сентенциальная. Кванторы и возникновение информатики

1 | Введение

Логика, как эпистемологический инструмент, — исследующий знание как таковое, — изобретена независимо в трёх отдельных государствах: Греции (Аристотелем), Китае (до правления Цинь Шихуанди) и Индии. В последних двух государствах логика не распространилась настолько, чтобы получить полноценное развитие. В античной же Греции логика сформировалась в своих основах столь определённо, что дополнилась только через 2 тысячелетия.

Значительные изменения в греческую логику, помимо Буля, Моргана и Рассела, внёс Фреге — самая важная фигура основателей формальной семантики. Он разработал логику предикатов и 2 вида кванторов, попытавшись создать «логически совершенный язык» о котором мечтал Лейбниц. Значимой личностью является также Гёдель, который открыл знаменитые две теоремы о неполноте, описывающие невозможность объединения множества доказуемых утверждений со множеством истинных. Он утверждал, что доказательства математики зависят от начальных предположений, а не фундаментальной истины, из которой происходят ответы. Одна из главных идей его работ состоит в том, что ни один набор аксиом, — в том числе математических, — не способен доказать свою непротиворечивость.

На этом этапе некоторые заметят влияние платонизма на австрийского логика. Совершенно верно, ведь Гёдель не раз заявлял о влиянии метафизики Платона на собственную деятельность. Но сам Платон развитию формальной логики способствовал лишь косвенно: в истории он вносит вклад в развитие другого направления — философской логики. Платоном созданы вопросы, на которых основывается вся западная академическая философия вплоть до наших дней. Философия, в том виде, котором она известна, возникла только благодаря учителю Аристотеля.

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатикеПлатон — учитель Аристотеля

В другие периоды в логику также вносили дополнения:

античной школой стоицизма введены термины «модальности», «материальной импликации», «оценки смысла и истины», которые являются задатками логики высказываний;

также средневековыми схоластами введены несколько понятий;

Но главное, что сами логические операции не изменились. «Органон» Аристотеля, как сборник из 6 книг — первоисточник, где подробно описаны главные логические законы. «Органон» (с древнегреческого ὄργανον), означает — инструмент. Аристотель считал, что логика является инструментом к познанию. Он объединяет методом получения информации такие науки:

Физика — наука о природе;

Метафизика — наука о природе природы;

Биология — раздел физики, наука о жизни;

Психология — раздел физики, наука о душе;

Кинематика — раздел физики, наука о движении;

2 | Терминология

У каждой из наук должен быть идентичный фундамент в способе получения гнозисов (знаний), который позволит упорядочить информацию и вывести новые силлогизмы (умозаключения). Только таким образом получится прогресс в познании истины. Без логики наука была бы похожа на коллекционирование фактов, ибо информация бы не поддавалась анализу.

Сам Аристотель находит логике как средству убеждения иное применение: в риторике, спорах, дебатах, выступлениях и т.д., описывая это в труде «Риторика». В западной философии принято давать чёткие определения перед рассуждениями, поэтому определимся с терминами. Логика — наука о правильном мышлении.

В языковой зависимости возникают трудности трактовки термина «наука», но даже в оригинальном названии труда Фридриха Гегеля «Наука логики» — «Wissenschaft der Logik», употребляется слово «наука» (Wissenschaft). Поэтому придём к консенсусу и будем считать, что научной можно назвать ту дисциплину, в которой возможны открытия, исследование и анализ. Логика в таком случае — наука, ибо внутри неё возможно совершать открытия. Яркий пример — комбинаторика Лейбница.

Слово «правильный» веет нормативными коннотациями: правильное поведение, правильное выражение лица, и т.д. Перечисленное соответствует некоторым критериям и логика выставляет их (критерии) для правильного мышления.

Слово «мышление» понимается на интуитивном уровне, но чёткое объяснение затруднительно, обширно и иногда не объективно.

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатикеБюст Аристотеля

3 | Формальная и неформальная логика

Первоначально, деление логики происходит на формальную и неформальную. Формальная логика отличается тем, что, в отличие от неформальной, записывается уравнениями. Неформальная же логика пишется выражениями в форме языка, поэтому она подходит для риторики, а формальная логика для абстрактных наук.

Формальная логика равным образом делится на дедуктивную и индуктивную. Они различаются тем, что в дедуктивном аргументе истинность условий гарантирует истинность умозаключения или вывода. В индукции же, при истинности условий одинаково возможен ложный и истинный вывод.

Законы формальной логики:

1. Закон тождества (А = А): эквивокация или двусмысленность недопустимы. Нельзя подменять одно понятие, другим.

2. Закон непротиворечия (А ∧ ¬А = 0): одно и то же утверждение не может быть истинным и ложным одновременно.

3. Закон исключения третьего или бивалентности (А ∨ ¬А = 1): утверждение может быть либо истинным, либо ложным — третьего не дано.

Принципы формальной логики:

1. Принцип достаточного обоснования: достаточными являются такие фактические и теоретические обоснования, из которых данное суждение следует с логической необходимостью.

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

4 | Сентенциальная логика (алгебра высказываний)

Базовые операции сентенциальной логики — логики высказываний, где заглавная буква означает предложение:

Отрицание (Утверждение ¬A истинно тогда и только тогда, когда A ложно): если имеем утверждение «А» и имеем утверждение «не А», то, когда утверждение «А» будет истинным — утверждение «не А» будет ложным. Также и когда утверждение «А» будет ложным — утверждение «не А» будет истинным.

Конъюнкция (Утверждение A ∧ B истинно, если и A, и B — истинны. Ложно в противном случае): в английском языке — союз «and/&»; в русском — «и». В утверждении «А и В», между «А» с «В» стоит знак конъюнкции — «∧». Утверждение «А и В» является истинным, если «А» с «В» являются истинными одновременно. Если хоть один элемент ложен, то всё утверждение ложно. «А и В» подразумевает, во-первых: истинность «А», во-вторых: истинность «В».

Дизъюнкция (Утверждение A ∨ B верно, если A или B (или оба) верны. Если оба не верны — утверждение ложно): в английском языке — союз «or»; в русском — «или». Существует два типа дизъюнкции — включающая и исключающая (в логике используется включающее «или»). Условия таковы, что утверждение «А или В» будет истинным, когда один или оба элемента истинны, но никогда — когда оба элемента ложны. Это противоречит нашему обыденному мышлению, т.к. когда спрашивают: «Чай или кофе?» мы выбираем один элемент, но в логике подразумевается выбор не только одного, а нескольких возможных.

Импликация (Утверждение A ⇒ B ложно, только когда A истинно, а B ложно): в английском языке — «therefore»; в русском языке — «следовательно». Подразумевает истинность одного элемента при истинности другого. Потому что условия истинности соблюдаются всегда, кроме случая, когда «А» истинно, а «B» ложно. Поэтому утверждение: «А» ложно, следовательно «B» ложно — истинно. Покажется, что когда «А» ложно, а «В» истинно — не соблюдаются условия, но это не так. Если вы скажете, что после дождя промокните — это утверждение будет истинным вне зависимости от того, пошёл дождь или нет.

Эквивалентность (Утверждение A ⇔ B истинно, только если оба значения A и B ложны, либо оба истинны): если истинно утверждение «А, следовательно В» и истинно утверждение «В, следовательно А», то истинными являются выражения «А эквивалентно В» и соответственно «В эквивалентно А». Условия истинности соблюдаются в случаях, когда оба элемента истинны или оба ложны.

Значение переменных

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

5 | Предикатная логика первого порядка

В XX веке, после добавлений в область логики работ Лейбница и Фреге, на основе этой дисциплины создаётся новая — информатика. Программирование сохраняет преемственность с видоизменённой логикой Аристотеля — предикатной логикой, описательная способность которой выше, чем у логики высказываний (сентенциальной).

Прежде чем разобрать этот новый тип логики, поговорим об её отличии от сентенциальной. Главная особенность предикатной логики, что заглавными буквами обозначаются предикаты, а не целые высказывания. Можно сказать, что предикат — это математическая функция, которая «накладывает» множество субъектов на множество утверждений.

Высказывание «Я пошёл в зоопарк» — состоит из субъекта и предиката. В нём субъект — «Я», а предикат — то, что остаётся кроме субъекта («пошёл в зоопарк»). Субъект — тот, кто совершает действие в предложении или имеет выраженное свойство; предикат — всё оставшееся. Таким образом, если в сентенциальной логике высказывание «Я пошёл в зоопарк» выражалось бы одной заглавной буквой, то в логике предикатов использовались бы две буквы (заглавная и подстрочная): «P» — для предиката; «x» — для субъекта. Субъекты обозначаются переменной («x»), потому что в предикатной логике появляются две относительно новые операции: универсальный и экзистенциальный кванторы. Особенность кванторов заключается в том, что ими возможно записать выражение истинное при всех возможных переменных «х» или хотя бы при одном.

Универсальный квантор (квантор всеобщности) обозначается символом — «∀», с указанием переменной под ним. Возьмём утверждение «Все пингвины чёрно-белые». В логике высказываний оно бы выражалось как «X ⇒ P», где «X» — нечто являющееся пингвином, а «P» — нечто являющееся чёрно-белым. В предикатной логике же используются субъекты и предикаты, поэтому нечто являющееся пингвином (субъект), обозначалось бы переменной «х» снизу под предикатом. «»х» — является пингвином, следовательно, является чёрно-белым». Записывается так: P(х) ⇒ B(х), где P(х): х — пингвин; B(х): x — чёрно-белый.

Однако этого недостаточно, ведь непонятно, один субъект «х» чёрно-белый или больше одного, а может вообще все. Поэтому утверждение «»х» — является пингвином, следовательно, является чёрно-белым», берётся в скобки и перед скобками используется символ «∀» с переменной «х» под ним — которые вместе и будут универсальным квантором.

Универсальный квантор переводится как: «Для всех «х» истинно, что …». Теперь утверждение «х — является пингвином, следовательно, является чёрно-белым» с универсальным квантором перед ним, расшифровывается так: «Для всех «х» истинно, что «х» — является пингвином, следовательно, является чёрно-белым». Это означает, что чем бы ни был объект во вселенной, если этот объект пингвин — он является чёрно-белым. Полная запись будет выглядеть так:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

Экзистенциальный квантор (квантор существования) обозначается символом — «∃» с указанием переменной под ним. Возьмём утверждение «Некоторые пингвины серые». Как и в прошлый раз, выражение «»x» — является пингвином и «х» — является серым» возносим в скобки и ставим перед ними квантор, в этом случае экзистенциальный с указанной переменной. «»x» — является пингвином и «х» — является серым» записывается так: P(х) ∧ C(х), где P(х): х — пингвин; C(х): x — серый.

Экзистенциальный квантор можно перевести так: «Есть такой «х», для которого будет истинно, что …». Подразумевается, что есть как минимум один «х», для которого выполняются условия выражения. Если вам говорят, что ДНК не существует, достаточно показать одну молекулу дезоксирибонуклеиновой кислоты для опровержения этого утверждения. Также и с кванторами, если существует хотя бы один серый пингвин, то утверждение об отсутствии серых пингвинов будет ложно. Полная запись экзистенциального квантора для выражения «Есть такой «х», для которого будет истинно, что «x» — является пингвином и «х» — является серым», будет выглядеть так:

Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике Что такое формальная логика в информатике. Смотреть фото Что такое формальная логика в информатике. Смотреть картинку Что такое формальная логика в информатике. Картинка про Что такое формальная логика в информатике. Фото Что такое формальная логика в информатике

6 | Заключение

Примечательно, что есть возможность перевода одного вида квантора в другой. Возьмём утверждение «Все пингвины не являются серыми». Для универсального квантора текстовая запись будет такая: «Для всех «х», будет истинным утверждение о том, что если «х» — является пингвином, то «х» — не является серым объектом». Но утверждение изменяется и для экзистенциального квантора, используя знак отрицания: «Нет такого «х», для которого бы было истинным утверждение о том, что «x»— является пингвином и «х»— является серым».

В середине XIX века, Готлоб Фреге дополнил логику Аристотеля двумя этими операциями, которые позже сформировались в отдельную дисциплину — предикатную логику. С введением в логику экзистенциального квантора (после универсального) — предикатная логика, в основе своей, завершилась как система…

Источники:

1 — Аристотель: «Органон» — «Первая аналитика» и «Вторая аналитика»;

2 — Аристотель: «Риторика»;

3 — Готлоб Фреге: «Исчисление понятий»;

4 — «Monatshefte für Mathematik und Physik» 1931 г.: Курт Гёдель «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах»;

5 — The Early Mathematical Manuscripts of Leibniz;

6 — Мельников Сергей: «Введение в философию Аристотеля»;

7 — Гильмутдинова Нина: «Логика и теория аргументации»;

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *