Что такое физическая величина в метрологии
Физические величины. Основным объектом измерения в метрологии являются физические величины.
Основным объектом измерения в метрологии являются физические величины.
В последнее время все большее распространение получает подразделение величин на физические и нефизические, хотя следует отметить, что пока нет строгого критерия для такого деления величин. При этом под физическими понимают величины, которые характеризуют свойства физического мира и применяются в физических науках и технике. Для них существуют единицы измерения. Физические величины в зависимости от правил их измерения подразделяются на три группы:
― величины, характеризующие свойства объектов (длина, масса);
― величины, характеризующие состояние системы (давление, температура);
― величины, характеризующие процессы (скорость, мощность).
К нефизическим относят величины, для которых нет единиц измерения. Они могут характеризовать как свойства материального мира, так и понятия, используемые в общественных науках, экономике, медицине.
Таким образом, величины можно систематизировать следующим образом (рисунок 3).
Рисунок 3 – Классификация величин
Идеальные величины, главным образом, относятся к математике и являются обобщением (моделью) конкретных реальных понятий. Реальные величины делятся, в свою очередь, на физические и нефизические.
В соответствии с таким разделением величин принято выделять измерения физических величин и нефизические измерения. Другим выражением такого подхода являются два разных понимания понятия измерения:
― измерение в узком смысле как экспериментальное сравнение одной измеряемой величины с другой известной величиной того же качества, принятой в качестве единицы;
― измерение в широком смысле как нахождение соответствий между числами и объектами, их состояниями или процессами по известным правилам.
Второе определение появилось в связи с широким распространением в последнее время измерений нефизических величин, которые фигурируют в медико–биологических исследованиях, в частности, в психологии, в экономике, в социологии и других общественных науках. В этом случае правильнее было бы говорить не об измерении, а об оценивании величин, понимая оценивание как установление качества, степени, уровня чего–либо в соответствии с установленными правилами. Другими словами, это операция по приписыванию путем вычисления, нахождения или определения числа величине, характеризующей качество какого–либо объекта, по установленным правилам. Например, определение силы ветра или землетрясения, выставление оценки фигуристам или оценок знаний учащихся по пятибалльной шкале. Понятие оценивание величин не следует путать с понятием оценки величин, связанным с тем, что в результате измерений мы фактически получаем не истинное значение измеряемой величины, а лишь его оценку, в той или иной степени близкую к этому значению.
Таким образом, физические величины делятся на измеряемые и оцениваемые. Измеряемые физические величины могут быть выражены количественно в виде определенного числа установленных единиц измерения, возможность введения и использования последних является важным отличительным признаком измеряемых величин.
Совокупность чисел Q, отображающая различные по размеру однородные величины, должна быть совокупностью одинаково именованных чисел. Это именование является единицей физической величины или ее доли. Единица физической величины [Q] – это физическая величина фиксированного размера, которой условно присвоено числовое значение, равное единице и применяемое для количественного выражения однородных физических величин.
Значение физической величины Q – это оценка ее размера в виде некоторого числа принятых для нее единиц. Числовое значение физической величины q – отвлеченное число, выражающее отношение значения величины к соответствующей единице данной физической величины.
Уравнение Q=q[Q], где Q – физическая величина, для которой строится шкала; [Q] – ее единица измерения; q – числовое значение физической величины, называют основным уравнением измерения. Суть простейшего измерения состоит в сравнении физической величины Q с размерами выходной величины регулируемой многозначной меры q[Q]. В результате сравнения устанавливают, что q[Q]
Дата добавления: 2016-04-11 ; просмотров: 1727 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Физическая величина как объект метрологии
Объектом метрологии являются физические величины. Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Человек в своем стремлении познать физические объекты — объекты познания — выделяет некоторое ограниченное количество свойств, общих для ряда объектов в качественном отношении, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин. Понятие «физическая величина» в метрологии, как и в физике, физическая величина трактуется как свойство физических объектов (систем), общее в качественном отношении многим объектам, но в количественном отношении индивидуальное для каждого объекта, т.е. как свойство, которое может быть для одного объекта в то или иное число раз больше или меньше, чем для другого (например, длина, масса, плотность, температура, сила, скорость). Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте — размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.
Совокупность величин, связанных между собой зависимостями, образуют систему физических величин. Объективно существующие зависимости между физическими величинами представляют рядом независимых уравнений. Число уравнений т всегда меньше числа величин п. Поэтому т величин данной системы определяют через другие величины, а я величин — независимо от других. Последние величины принято называть основными физическими величинами, а остальные — производными физическими величинами.
Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовали унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе.
Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений. При этом она должна была сохранить принцип когерентности (равенство единице коэффициента пропорциональности в уравнениях связи между физическими величинами).
В 1954 г. X Генеральная конференция по мерам и весам установила шесть основных единиц (метр, килограмм, секунда, ампер, кельвин и свеча) практической системы единиц. Система, основанная на утвержденных в 1954 г. шести основных единицах, была названа Международной системой единиц, сокращенно СИ (SI— начальные буквы французского наименования Systeme International di Unites). Был утвержден перечень шести основных, двух дополнительных и первый список 27 производных единиц, а также приставки для образования кратных и дольных единиц.
В России действует ГОСТ 8.417—2002, предписывающий обязательное использование СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные, либо русские обозначения (но не те и другие одновременно).
Основные единицы СИ с указанием сокращенных обозначений русскими и латинскими буквами приведены в табл. 9.1.
Определения основных единиц, соответствующие решениям Генеральной конференции по мерам и весам, следующие.
Метр равен длине пути, проходимого светом в вакууме за
/299792458 Д° лю СеКуНДЫ.
Килограмм равен массе международного прототипа килограмма.
Секунда равна 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.
Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную 2-10- 7 Н.
Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.
Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг.
Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540-10 12 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.
Таблица 9.1 Основные единицы СИ
Производные единицы Международной системы единиц образуются с помощью простейших уравнений между величинами, в которых числовые коэффициенты равны единице. Так, для линейной скорости в качестве определяющего уравнения можно воспользоваться выражением для скорости равномерного прямолинейного движения v = l/t.
При длине пройденного пути (в метрах) и времени t, за которое пройден этот путь (в секундах), скорость выражается в метрах в секунду (м/с). Поэтому единица скорости СИ — метр в секунду — это скорость прямолинейно и равномерно движущейся точки, при которой она за время t перемещается на расстояние 1 м.
Если в определяющее уравнение входит числовой коэффициент, то для образования производной единицы в правую часть уравнения следует подставлять такие числовые значения исходных величин, чтобы числовое значение определяемой производной единицы было равно единице.
Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.
В табл. 9.2 приводятся множители и приставки для образования десятичных кратных и дольных единиц и их наименования.
Таблица 9.2 Образование десятичных кратных и дольных единиц измерения
Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в системе СИ присвоены собственные названия.
Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазоне, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).
Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т.д.). Квантованная величина имеет в заданном диапазоне только счетное множество размеров. Примером такой величины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Размеры квантованной величины могут соответствовать только определенным уровням — уровням квантования. Разность двух соседних уровней квантования называют ступенью квантования (квантом). Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.
Физические величины делят на активные и пассивные. Активные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации. Пассивные величины (например, масса, элек-тоическое сопротивление, индуктивность) сами не могут
создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора через него должен протекать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.
Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физической величины. Размер единицы физической величины может быть любым. Однако измерения должны выполняться в общепринятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями.
Мокров Ю. Метрология, стандартизация, сертификация
ОГЛАВЛЕНИЕ
Часть 1. МЕТРОЛОГИЯ
Глава 1. Метрология как наука об измерениях
1.1. Понятие и основные проблемы метрологии
Метрология состоит из следующих основных разделов:
Выделение законодательной метрологии с самостоятельный раздел обусловлено необходимостью законодательного регулиро-вания и контроля со стороны государства за деятельностью по обеспечению единства измерений.
Деятельность по обеспечению единства измерений (ОЕИ) регулируется Законом РФ «Об обеспечении единства измерений», принятом в 1993 г. Это закон устанавливает правовые основы обеспечения единства измерений в РФ. Он регулирует отношения государственных органов управления РФ с физическими и юридическими лицами по вопросам изготовления, выпуска, эксплуатации, ремонта, продажи, поверки и импорта средств измерений и направлен на защиту интересов граждан и экономики страны от отрицательных последствий недостоверных результатов измерений. Подробнее правовые вопросы обеспечения единства измерений рассматриваются ниже в соответствующем разделе.
В России сформирована Государственная система обеспе-чения единства измерений (ГСИ) как система управления деятельностью по обеспечению единства измерений, возглавляемая, реализуемая и контролируемая Федеральным агентством по техническому регулированию и метрологии (Ростехрегулиро-ванием). Целью ГСИ является создание общегосударственных правовых, нормативных, организационных, технических условия для решения задач по ОЕИ Нормативная база ГСИ насчитывает более 2500 обязательных и рекомендательных документов, регламентирующих практически все аспекты в области метрологии. Подробнее о задачах и составе ГСИ будет сказано в разделе о правовых основах ОЕИ.
В настоящей главе рассматриваются основные понятия, входящие в определение метрологии.
Измерение является одной из самых древнейших операций в процессе познания человеком окружающего материального мира. Вся история цивилизации представляет собой непрерывный процесс становления и развития измерений, совершенствования средств методов и измерений, повышения их точности и единообразия мер.
В процессе своего развития человечество прошло путь от измерений на основе органов чувств и частей человеческого тела до научных основ измерений и использования для этих целей сложнейших физических процессов и технических устройств. В настоящее время измерениями охватываются все физические свойства материи практически независимо от диапазона изменения этих свойств.
С развитием человечества измерения приобретали все большее значение в экономике, науке, технике, в производственной деятельности. Многие науки стали называться точными благодаря тому, что они могут устанавливать с помощью измерений количественные соотношения между явлениями природы. По существу, весь прогресс науки и техники неразрывно связан с возрастанием роли и совершенствованием искусства измерений. Д.И. Менделеев говорил, что «наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры».
Не меньшее значение имеют измерения в технике, производственной деятельности, при учете материальных ценностей, при обеспечении безопасных условий труда и здоровья человека, в сохранении окружающей среды. Современный научно-технический прогресс невозможен без широкого использования средств измерений и проведения многочисленных измерений.
В нашей стране проводится более десятки миллиардов измерений в день, свыше 4 млн. человек считают измерение своей профессией. Доля затрат на измерения составляет (10-15) % всех затрат общественного труда, достигая в электронике и точном машиностроении (50-70) %. В стране используется около миллиарда средств измерений. При создании современных электронных систем (ЭВМ, интегральных схем и т. п.) до (60-80) % затрат приходится на измерения параметров материалов, компонентов и готовых изделий.
Все это говорит о том, что невозможно переоценить роль измерений в жизни современного общества.
Хотя человек проводит измерения с незапамятных времен и интуитивно этот термин представляется понятным, точно и правильно определить его не просто. Об этом говорит, например, дискуссия по вопросам понятия и определения измерения, прошедшая не так давно на страницах журнала «Измерительная техника». В качестве примера ниже приводятся различные определения понятия «измерение», взятые из литературы и нормативных документов разных лет.
Из рассмотрения приведенных определений понятия «измерение» наиболее предпочтительным, включающим в себя в той или иной мере все другие приведенные определения, следует считать определение, приведенное в РМГ 29-99. В нем учтена техническая сторона измерения как совокупность операций по применению технического средства, показана метрологическая суть измерения как процесса сравнения с размером единицы (мерой) и представлена познавательная сторона измерения как процесса получения значения величины.
Приведенные выше определения измерения могут быть выражены уравнением, которое в метрологии называется основным уравнением измерений:
где — измеряемая величина;
— числовое значение измеряе-мой величины;
— единица измерения.
Во всех определениях измерения присутствует понятие величины, или более строго, физической величины.
1.3 Физические величины и их измерения
— величины, характеризующие процессы (скорость, мощность).
К нефизическим относят величины, для которых нет единиц измерения. Они могут характеризовать как свойства материального мира, так и понятия, используемые в общественных науках, экономике, медицине. В соответствии с таким разделением величин принято выделять измерения физических величин и нефизические измерения. Другим выражением такого подхода являются два разных понимания понятия измерения:
одной измеряемой величины с другой известной величиной того
же качества, принятой в качестве единицы;
между числами и объектами, их состояниями или процессами по
известным правилам.
Второе определение появилось в связи с широким распространением в последнее время измерений нефизических величин, которые фигурируют в медико-биологических исследованиях, в частности, в психологии, в экономике, в социологии и других общественных науках. В этом случае правильнее было бы говорить не об измерении, а об оценивании величин, понимая оценивание как установление качества, степени, уровня чего-либо в соответствии с установленными правилами. Другими словами, это операция по приписыванию путем вычисления, нахождения или определения числа величине, характеризующей качество какого-либо объекта, по установленным правилам. Например, определение силы ветра или землетрясения, выставление оценки фигуристам или оценок знаний учащихся по пятибалльной шкале.
Понятие оценивание величин не следует путать с понятием оценки величин, связанным с тем, что в результате измерений мы фактически получаем не истинное значение измеряемой величины, а лишь его оценку, в той или иной степени близкую к этому значению.
Рассмотренное выше понятие «измерение», предполагающее наличие единицы измерения (меры), соответствует понятию измерения в узком смысле и является более традиционным и классическим. В этом смысле оно и будет пониматься ниже — как измерение физических величин.
Ниже приведены основные понятия, относящиеся к физической величине (здесь и далее все основные понятия по метрологии и их определения приводятся по упомянутой выше рекомендации по межгосударственной стандартизации РМГ 29-99):
— размер физической величины — количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу;
— значение физической величины — выражение размера физической величины в виде некоторого числа принятых для нее единиц;
— истинное значение физической величины — значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину (может быть соотнесено с понятием абсолютной истины и получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений);
1.4 Шкалы измерений
1.5 Системы физических величин
Для того чтобы можно было провести измерение и достичь поставленную перед ним цель, необходимо сформулировать измерительную задачу, в которую должны войти следующие составляющие элементы измерений:
1.7 Классификация измерений
В зависимости от рода измеряемой величины, условий проведения измерений и приемов обработки экспериментальных данных измерения могут классифицироваться с различных точек зрения.
С точки зрения общих приемов получения результатов они разделены на четыре класса:
1.8 Принципы, методы и методики измерений
Наряду с рассмотренными выше основными характеристиками измерений, в теории измерений рассматриваются такие их характеристики, как принцип и метод измерений.
Принцип измерений – физическое явление или эффект, положенное в основу измерения. Например, использование силы тяжести при измерении массы взвешиванием.
Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей в соответствии с реализованным принципом измерений. Как правило, метод измерений обусловлен устройством средств измерений. Некоторыми примерами распространенных методов измерений являются следующие методы.
Метод непосредственной оценки – метод, при котором значение величины определяют непосредственно по показывающему средству измерений. Например, взвешивание на циферблатных весах или измерение давления пружинным манометром.
Дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Этот метод может дать очень точные результаты. Так, если разность составляет 0,1 % измеряемой величины и оценивается прибором с точностью до 1 %, то точность измерения искомой величины составит уже 0,001 %. Например, при сравнении одинаковых линейных мер, где разность между ними определяется окулярным микрометром, позволяющим ее оценить до десятых долей микрона.
Нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Мера – средство измерений, предназначенное для воспроизведения и хранения физической величины. Например, измерение массы на равноплечных весах при помощи гирь. Принадлежит к числу очень точных методов.
Метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают величиной, воспроизводимой мерой. Например, измерение напряжения постоянного тока на компенсаторе сравнением с известной ЭДС нормального элемента. Результат измерения при этом методе либо вычисляют как сумму значения используемой для сравнения меры и показания измерительного прибора, либо принимают равным значению меры. Существуют различные модификации этого метода:
О понятии «ВЕЛИЧИНА» в метрологии
В. Я. Бараш
В настоящей статье приводится и обсуждается функциональное для метрологии понятия «величина». Определение понятия «величина» является одним из основных с точки зрения построение теории измерений.
Приведем определения величины в известных источниках.
В [1] термин «физическая величина, величина»: Одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.
Термины «измеряемая физическая величина, измеряемая величина».
Физическая величина, подлежащая измерению, измеряемая или измеренная в соответствии с основной целью измерительной задачи.
В [2] термин «Величина (измеряемая)»: Свойство явления, тела или вещества, которое может быть различимо качественно и определено количественно.
В [3] термин «измеряемая величина»: Конкретная величина, подлежащая измерению.
В [4] термин «величина»: Свойство явления, тела и вещества, которое может быть выражено количественно в виде числа с указанием репера1 (как основы для сравнения). Значение величины.
В [1] термин «значение физической величины»: Выражение физической величины в виде некоторого числа принятых для нее единиц.
В [2]: Количественное значение величины, обычно в форме произведения единицы измерения на некоторое число.
В [3] термин «значение величины» отсутствует.
В [4] термин «значение величины» отсутствует. Однако, трактовка этого термина следует из вышеприведенного Примечания 1 к термину «величина».
Из изложенного следует важное отличие в подходе, принятом в [1], [2] и [3], с одной стороны, и в [4] с другой, относительно способа представления значения величины. Если в первых трех документах оно выражается только в единицах измерения, то в [4] это значение выражается в реперах (англ. reference), разновидностью которых может быть единица измерения, методика измерения, стандартный образец или их комбинация.
Приведенные термины и определения дают возможность сравнить концепцию неопределенности и концепцию погрешности.
В основе различий двух концепций метрологии лежит, прежде всего, различие в принципиальных подходах к фундаментальному понятию метрологии, именно к понятию «величина». В концепции погрешности величина рассматривается свойство явления, тела или вещества, имеющее единственное (уникальное) значение. В соответствии с этим и результат измерения имеет единственное значение, которое находится в некотором доверительном интервале. Принимается, что в пределах этого интервала с некоторой вероятностью находится уникальное значение измеряемой величины. Разность между результатом измерения и этим истинным значением представляет собой погрешность результата измерения. Эта разность, в силу того, что и истинное значение и результат измерения являются единственными, представляет собой действительную величину. Следовательно, упомянутый интервал или область представляет собой погрешность результата измерения. В силу того, что истинное значение величины неизвестно, указанная погрешность также является неизвестной величиной.
В концепции неопределенности [5] понятие «погрешность» сохранилось, однако претерпело существенное изменение. Погрешность может использоваться только в тех случаях, когда измерению подлежит величина, имеющая условное (приписанное) значение. В этих случаях погрешность, как разность результата измерения и измеряемой величины, является известной.
В концепции неопределенности можно обходиться без понятия истинного значения величины,применяя просто термин «величина».
Кроме того, в концепции неопределенности величины характеризуется не единственным значениям, а совокупностью значений, ограниченных некоторым интервалом, представляющим собой неопределенность измеряемой величины.
В отличие от концепции погрешности, где результат измерения имеет единственное значение, в концепции неопределенности результат измерения представляет собой интервал значений, включающий неопределеность измеряемой величины, нeoпределенность, связанную с процессом измерения, и неопределенность калибровки средства измерения.
Анализ определений величины в приведенных документах свидетельствует о том, что понятие «величина» не рассматривается с точки зрения ее зависимости от времени и пространства.
Вместе с тем с теоретической точки зрения признание объекта измерения неизменяемым и, следовательно, характеризуемым неизменными величинами, с физической точки зрения является неприемлемым.
Появление новых видов измерений, например, измерений переменного тока, вибрации, удара, переменных сил, переменных давлений, геометрических параметров поверхности, а также необходимость повышения точности измерений привели к созданию средств измерений, с помощью которых можно было измерять переменные во времени и пространстве физические величины. Однако, до сих пор, несмотря на то, что в отдельных видах измерений физических величин, переменных во времени и пространстве, созданы соответствующие средства измерений и нормативно-техническая база для их проведения, важнейшие метрологические проблемы общего характера остаются практически незатронутыми. К таким вопросам относятся: связь между статическими и динамическими измерениями, методология оценки погрешности и неопределенности измерений, методы корректировки динамических характеристик средств измерений и т. п.
Анализ определений величины и ее разновидностей в приведенных документах свидетельствует об отсутствии в них указания о связи величины с временем и пространством, т.е. с формами существования материальных объектов. Это можно расценить как указание на то, что величина всегда является неизменной во времени и пространстве. Между тем, с точки зрения физики гораздо более приемлемым является утверждение о том, что величины всегда являются переменными во времени и пространстве, что является фундаментальным свойством как величин, так и объектов измерения, ими характеризуемых. Закономерности изменения величины в пространстве и времени могут быть разнообразными и, с математической точки зрения, могут описываться различными зависимостями. Однако, можно попытаться на основе законов физики предложить обобщенную математическую модель величины, по меньшей мере, не противоречащую этим законам и дающую возможность на основе этой обобщенной модели создавать частные модели, описывающие все разнообразие форм изменения величин во времени и пространстве.
Признавая изменчивость величины во времени и пространстве, следует к основному определению величины добавить следующие положения:
В соответствии с этим величина описывается следующей формулой:
центрированная случайная величина, т.е. случайная величина с математическим ожиданием, равным нулю,
координата времени или пространства.
Реализация случайной величины является детерминированной величиной. Одной из реализаций случайной величины (наиболее вероятной) является ее математическое ожидание.
Из этого вытекает, что величина может рассматриваться двояко: как ее возможная реализация и как совокупность ее возможных реализаций. Этот факт является весьма значимым как с точки зрения философской стороны измерения, так и с точки зрения практической метрологии.
Из формулы следует, что чем меньше х(£), тем более узкий «коридор», в котором могут находиться возможные реализации случайной величины. В пределе этот коридор может быть достаточно малым, чтобы пренебречь им. В этом случае можно, с практической точки зрения, полагать, что величина описывается только одной реализацией, которая является ее математическим ожиданием.
В общем случае математическое ожидание случайного процесса нельзя рассматривать как физически реализуемую (материальную) величину. Оно находится расчетным путем с применением соответствующего алгоритма обработки значений случайного процесса, т.е. ее следует рассматривать как параметр величины. То же самое следует сказать и о корреляционной функции случайного процесса. Однако, математическое ожидание становится физической величиной, если случайной составляющей величины (центрированной случайной величиной) можно пренебречь.
В этом случае х(£) = 0 и г(<)
Введение указанной математической модели основывается на следующих положениях. В физике состояние макроскопических объектов рассматривается сточки зрения поведения подсистем, входящих в макроскопическую систему. С физической точки зрения поведения подсистем имеет вероятностный характер [6]. Макроскопический объект, состоящий из большого числа подсистем, описывается преимущественно математическим ожиданием физических характеристик, что соответствует его статистическому равновесию.
Не смотря на то, что теоретически в поведении макроскопических объектов имеет место и случайная составляющая, в условиях статистического равновесия с окружающими воздействиями, она пренебрежимо мала по сравнению со средним значением физических величин, характеризующих объект.
В частном случае, когда случайная центрированная составляющая величины пренебрежимо мала, величину можно считать адекватной ее математическому ожиданию.
Вместе с тем процесс измерения проходит в условиях взаимодействия объекта измерения с окружающей средой. Это взаимодействие не изменяет в принципе приведенную аналитическую модель величины, но может существенно повлиять на характер изменения величины во времени и в пространстве.
Следует обратить внимание на то, что, как в концепции погрешности, так и в концепции неопределенности в их современном виде в определениях величины не учитывают изменчивости величины во времени и в пространстве. Такой подход является неадекватным с физической точки зрения и требует расширения с учетом признания указанной выше изменчивости величин, характеризующих состояние объекта измерения.
Рассмотрим приведенные физическую и математическую модели величины с точки зрения двух обсуждаемых концепций. Рассмотрение указанной проблемы сточки зрения концепции погрешности приводит к выводу, что истинное значение величины тождественно реализации случайной величины, которая является детерминированной величиной и, следовательно, имеет уникальное значение в каждый момент времени и в каждой координате пространства. С этой точки зрения непризнание концепцией неопределенности уникального истинного значения является сомнительным.
В концепции неопределенности величина, по существу, трактуется как совокупность истинных значений, ограниченных некоторым вероятностным интервалом. Принимая во внимание математическую модель величины, можно сделать вывод о том, что в этом случае за величину принимается совокупность реализаций случайной величины. Эта совокупность означает «интервальность» истинного значения в концепции неопределенности и является физической основой неопределенности.
В тоже время концепция неопределенности признает понятие «существенно уникального значения», которое, с точки зрения принятой математической модели, означает узость интервала, в пределах которого могут находится реализации случайной величины. В этом случае можно ставить вопрос о такой модели разброса реализаций величины, которая позволяет пренебрегать этим разбросом.
Приведенные рассуждения означают возможность «компромисса» двух концепций, который основывается на достаточной малости этого разброса. Кроме того, отметим, что в этом смысле концепцию погрешности можно рассматривать как частный случай концепции неопределенности, что позволяет пользоваться первой при оценке результата измерения величины, которая имеет пренебрежимо малый разброс.
Приведенные выше соображения о физической и соответствующей математической природе величины позволяют утверждать, что неопределенность величины объясняется ее случайным характером и, следовательно, является ее фундаментальным свойством. «Интервальность» величины не означает одновременного наличия совокупности значений величины в некотором интервале. Она предполагает, что каждая пространственно-временная ячейка, т. е. некоторый фиксированный момент времени и некоторая фиксированная пространственная координата, характеризуются доверительным интервалом, в пределах которого с разной вероятностью могут содержаться разные значения величины.
Кроме того, отсюда следует, что неопределенность величины является ее физической сущностью и не может рассматриваться как «неопределенность определения» величины или как составляющая неопределенности определения. В связи с этим нельзя признать трактовку «неопределенности определения» величины, возникающую вследствие различных значений величины в различных координатах пространства или в различные моменты времени, что утверждается в GUM-9 на примере различной толщин листа в его различных местах
ЛИТЕРАТУРА
1. РМГ 29-99* ГСИ. Метрология. Основные термины и определения
2. Международный словарь основных и общих терминов в метрологии. «International Vocabulary of Basic and General Terms in Metrology» 2nd edition (VIM 2);
3. Международный электротехнический словарь. Электрические и электронные измерения и измерительные приборы. Часть 311. Общие термины, относящиеся к измерениям.
5. В. Я. Бараш, О. Ю. Третьякова «Неопределенность и погрешность в современной метрологии». «Законодательная и прикладная метрология», N° 5, 2009 г.
6. Л. Д. Ландау, Е. М. Лифшиц «Статистическая физика», 1964 г.