что такое бюджет неопределенности измерений
Неопределенность измерений в метрологии
Определения погрешности и неопределенности измерений.
История возникновения термина «неопределенность измерений».
Термины используемые при расчете неопределенности.
Соотношение терминов теории неопределенности с терминами классической теории точности (в скобках):
Подробно о типах определённости и их расчётах рассказано в статье «Понятие и типы неопределенностей. ГОСТ 34100.3-2017»
Оценка результата измерений в терминах «погрешность измерений».
Рис.1. Диапазон возможных значений при погрешности
Оценка результата измерений в терминах «неопределенность измерений».
Рис.2. Диапазон возможных значений при неопределенности
Рис.3. Интервал значений при расчете неопределенности
Расчёт неопределённости с применением приборов.
В следующей статье «Расчет неопределенности результатов измерений | пример для люксметра «еЛайт»» мы рассмотрим практический пример как вручную вычислить неопределенность измерений освещенности, используя люксметр-пульсметр-яркомер еЛайт02. В некоторых современных приборах такой расчёт неопределённости уже осуществляется автоматически, как, например, в самом доступном люксметре с поверкой еЛайт-мини.
Рис.4. Профессиональный измеритель освещённости еЛайт01 с функцией автоматического расчёта неопределённости измерений.
Рис.5. Термоанемометр-гигрометр-барометр ЭкоТерма Максима 01 с функцией автоматического расчёта неопределённости измерений.
Выводы.
Отличие понятия «погрешности» от «неопределенности»:
Понравился материал? Поделитесь им в соцсетях:
бюджет неопределенности измерений
3.12 бюджет неопределенности измерений : Сводная таблица составляющих суммарной стандартной неопределенности измерений.
3.12 бюджет неопределенности измерений: Сводная таблица составляющих суммарной стандартной неопределенности измерений.
Полезное
Смотреть что такое «бюджет неопределенности измерений» в других словарях:
Бюджет неопределенностей измерения ТЭДС градуируемой КТХА. — 7. Бюджет неопределенностей измерения ТЭДС градуируемой КТХА. Источник неопределенности Оценка стандартной неопределенности, Тип, Метод расчета, Пункт Приложения А, Размерность Коэффициент влияния Вклад в суммарную стандартную неопределенность… … Словарь-справочник терминов нормативно-технической документации
ГОСТ 8.461-2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки — Терминология ГОСТ 8.461 2009: Государственная система обеспечения единства измерений. Термопреобразователи сопротивления из платины, меди и никеля. Методика поверки оригинал документа: 3.12 бюджет неопределенности измерений: Сводная таблица… … Словарь-справочник терминов нормативно-технической документации
ГОСТ Р 8.624-2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Методика поверки — Терминология ГОСТ Р 8.624 2006: Государственная система обеспечения единства измерений. Термометры сопротивления из платины, меди и никеля. Методика поверки оригинал документа: 3.12 бюджет неопределенности измерений : Сводная таблица составляющих … Словарь-справочник терминов нормативно-технической документации
МИ 3090-2007: Государственная система обеспечения единства измерений. Преобразователи термоэлектрические с длиной погружаемой части менее 250 мм. Методика поверки — Терминология МИ 3090 2007: Государственная система обеспечения единства измерений. Преобразователи термоэлектрические с длиной погружаемой части менее 250 мм. Методика поверки: 7. Бюджет неопределенностей измерения ТЭДС градуируемой КТХА.… … Словарь-справочник терминов нормативно-технической документации
суммарная стандартная неопределенность — 3.2 суммарная стандартная неопределенность (combined standard uncertainty): Стандартная неопределенность результата измерений, полученного на основе значений других величин, равная положительному квадратному корню из суммы членов, которыми могут… … Словарь-справочник терминов нормативно-технической документации
суммарная стандартная неопределенность u с — 3.9 суммарная стандартная неопределенность u с : Стандартная неопределенность результата измерений, полученного через значения других величин, равная положительному квадратному корню суммы членов, являющихся дисперсиями или ковариациями этих… … Словарь-справочник терминов нормативно-технической документации
суммарная стандартная неопределенность; ис — 3.9 суммарная стандартная неопределенность; ис: Стандартная неопределенность результата измерений, полученного через значения других величин, равная положительному квадратному корню суммы членов, представляющих собой дисперсии или ковариации этих … Словарь-справочник терминов нормативно-технической документации
требование — 3.1.2 требование (requirement): Потребность или ожидание, которое установлено, обычно предполагается или является обязательным. Примечания 1 Слова «обычно предполагается» означают, что это общепринятая практика организации (3.3.1),ее потребителей … Словарь-справочник терминов нормативно-технической документации
Инфляция — (Inflation) Инфляция это обесценивание денежной единицы, уменьшение ее покупательной способности Общая информация об инфляции, виды инфляции, в чем состоит экономическая сущность, причины и последствия инфляции, показатели и индекс инфляции, как… … Энциклопедия инвестора
Что такое бюджет неопределенности измерений
ГОСТ Р ИСО 21748-2012
НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ
РУКОВОДСТВО ПО ИСПОЛЬЗОВАНИЮ ОЦЕНОК ПОВТОРЯЕМОСТИ, ВОСПРОИЗВОДИМОСТИ И ПРАВИЛЬНОСТИ ПРИ ОЦЕНКЕ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ
Statistical methods. Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation
Дата введения 2013-12-01
Предисловие
1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 125 «Статистические методы в управлении качеством продукции»
3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1419-ст
4 Настоящий стандарт идентичен международному стандарту ИСО 21748:2010* «Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений» (ISO 21748:2010 «Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation», IDT).
Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2012 (пункт 3.5).
При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА
6 ПЕРЕИЗДАНИЕ. Июль 2019 г.
Введение
Знание неопределенности результатов измерений крайне важно для принятия решений. Без количественных оценок неопределенности невозможно решить, превышают ли наблюдаемые отклонения результатов измерений заданную изменчивость, соответствуют ли объекты испытаний установленным требованиям. При отсутствии информации о неопределенности результатов измерений велика вероятность ошибочного принятия решений, которые могут привести к непредусмотренным расходам в процессе производства, неправильным судебным выводам, неблагоприятным последствиям для здоровья человека или неблагоприятным социальным последствиям.
ИСО/МЭК 17025:2005 «Общие требования к компетентности испытательных и поверочных лабораторий» (ISO/IEC 17025:2005 «General requirements for the competence of testing and calibration laboratories»).
ИСО 5725-2:1994 «Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерения» [ISO 5725-2:1994 «Accuracy (trueness and precision) of measurement methods and results. Part 2. Basic method for the determination of repeatability and reproducibility of a standard measurement method»]
Общий подход, используемый в настоящем стандарте, требует, чтобы:
— оценки повторяемости, воспроизводимости и правильности метода, полученные при межлабораторном исследовании в соответствии с ИСО 5725-2:1994, могли быть получены из опубликованной информации об использовании метода испытаний. Эти оценки позволяют получать внутрилабораторные и межлабораторные составляющие неопределенности, а также оценку неопределенности результатов, связанную с правильностью метода;
— лаборатория подтвердила на основе проверок присущих ей смещения и прецизионности, что качество выполнения ею метода испытаний соответствует установленным требованиям к методу испытаний, то есть подтвердила, что опубликованные данные о применении метода согласуются с результатами измерений и испытаний, полученными лабораторией;
— любые воздействия на результаты измерений, не охваченные межлабораторными исследованиями, были идентифицированы, а отклонения, вызванные этими воздействиями, определены количественно.
Оценку неопределенности определяют объединением оценок дисперсии, полученных в результате межлабораторных исследований в соответствии с GUM.
Для контроля полного понимания метода разброс результатов, полученных в межлабораторном исследовании, полезно сравнивать с оценками неопределенности измерений, полученными с использованием процедур GUM. Такие сравнения будут более эффективны при использовании последовательных оценок одного и того же параметра, полученных на основе данных совместных исследований.
Применяемый в настоящем стандарте международный стандарт разработан Техническим комитетом ИСО/ТС 69 «Применение статистических методов».
1 Область применения
В настоящем стандарте приведено руководство для:
— оценки неопределенности измерений на основе данных, полученных в результате исследований, проводимых в соответствии с ИСО 5725-2;
— сравнения результатов, полученных в межлабораторном исследовании, с оценками неопределенности измерений исследуемого параметра, полученными с использованием принципов переноса неопределенности (см. раздел 13).
В ИСО 5725-3 установлены дополнительные модели для анализа промежуточной прецизионности. Однако оценка неопределенности с использованием этих моделей не включена в настоящий стандарт, хотя этот общий подход может быть применен к более широкой группе моделей.
Настоящий стандарт применим во всех областях измерений и испытаний, когда должна быть определена неопределенность результатов.
В настоящем стандарте не приведено описание применения данных повторяемости в отсутствии данных воспроизводимости.
В настоящем стандарте использовано предположение, что признанные значимыми систематические воздействия устранены либо путем численной корректировки результатов, включенной в метод измерений, либо путем анализа и устранения причины воздействий.
В настоящем стандарте приведено общее руководство. Представленный подход к оценке неопределенности применим во многих случаях, однако возможно применение и других методов.
В общем случае информация, приведенная в настоящем стандарте, относительно результатов, методов и процессов измерений, относится также к результатам, методам и процессам испытаний.
2 Термины и определения
В настоящем стандарте применены термины по ИСО 5725-3, а также следующие термины с соответствующими определениями:
2.1 смещение (bias): Разность между математическим ожиданием результатов наблюдений испытаний и измерений и истинным значением.
1 Смещение представляет собой систематическую ошибку в противоположность случайной ошибке. Могут существовать одна или несколько причин, вызывающих систематическую ошибку. Большее систематическое отклонение от истинного значения соответствует большему значению смещения.
Применительно к измерениям под ошибкой следует понимать «погрешность».
3 На практике применяют вместо истинного значения принятое опорное значение.
[ИСО 3534-2:2006, определение 3.3.2]
2.2 суммарная стандартная неопределенность (combined standard uncertainty); : Стандартная неопределенность результата измерений, полученного через значения ряда других величин, равная положительному квадратному корню из суммы членов, представляющих собой дисперсии или ковариации этих величин, взятых с весами, соответствующими степени влияния этих величин на результат измерений.
[Руководство ИСО/МЭК 98-3:2008, определение 2.3.4]
2.3 коэффициент охвата (coverage factor); : Числовой коэффициент, на который умножают суммарную стандартную неопределенность при определении расширенной неопределенности.
[Руководство ИСО/МЭК 98-3:2008, определение 2.3.6]
2.4 расширенная неопределенность (expanded uncertainty); : Величина, определяющая интервал вокруг математического ожидания результатов измерений, охватывающий большую долю распределения значений, которые обоснованно могут быть приписаны измеряемой величине.
1 Долю распределения, охватывающую интервалом, характеризует вероятность охвата или уровень доверия интервала.
2 Чтобы связать определенный уровень доверия с интервалом расширенной неопределенности, необходимы предположения (в явной или неявной форме) о форме распределения вероятностей результатов измерений и их суммарной стандартной неопределенности. Уровень доверия, который соответствует этому интервалу, может соответствовать действительности только в той степени, в какой могут быть справедливы предположения.
3 В рекомендациях [20] расширенную неопределенность называют общей неопределенностью.
[Руководство ИСО/МЭК 98-3:2008, определение 2.3.5]
2.5 прецизионность (precision): Близость независимых результатов наблюдений, полученных при определенных принятых условиях.
1 Прецизионность зависит от распределения случайных ошибок и не связана ни с истинным, ни с заданным значениями.
2 Меру прецизионности обычно выражают в терминах изменчивости и вычисляют как стандартное отклонение результатов наблюдений (испытаний/измерений). Малой прецизионности соответствует большое стандартное отклонение.
3 Количественные меры прецизионности существенным образом зависят от принятых условий. Условия повторяемости и условия воспроизводимости являются примерами крайних вариантов принятых условий.
[ИСО 3534-2:2006, определение 3.3.4]
2.6 повторяемость (repeatability): Прецизионность в условиях повторяемости.
[ИСО 3534-2:2006, определение 3.3.5]
2.7 условия повторяемости (repeatability conditions): Условия наблюдений, при которых независимые результаты наблюдений (испытаний/измерений) получают одним и тем же методом на идентичных объектах наблюдений, в одной и той же лаборатории, с применением одних и тех же средств испытаний/измерений, одним и тем же оператором, с использованием одного и того же оборудования в течение короткого интервала времени.
— процедур измерений или испытаний;
— измерительного и испытательного оборудования, используемых в одних и тех же условиях;
Аккредитация в Росаккредитации
форум для аккредитованных лабораторий
Вопросы учета неопределенности измерений
#1 Вопросы учета неопределенности измерений
Как видим, оба основополагающих документа дают примерно одинаковые определения, которые коротко можно объединить простой фразой: неопределенность есть мера рассеяния результатов измерения.
Пожалуй, для большинства читателей этих знаний достаточно, и им можно сразу перейти к следующим разделам, посвященным оценке неопределенности. Тем же, кто желает чуть глубже понять природу неопределенности, разобраться, чем неопределенность отличается от привычного со школьной скамьи термина «погрешность», будет полезно то, что сказано далее (а тому, кто хочет погрузиться совсем глубоко, мы советуем изучить Приложение D ГОСТ 34100.3 (действует с 01.09.2018 взамен ГОСТ Р 54500-3).
Для начала отметим, что введение в метрологию термина «неопределенность» привело не столько к появлению каких-то новых аналитических выражений и вычислений, сколько к изменению общего взгляда на то, что такое измерение.
Сравним два определения:
ДЕЙСТВУЮЩЕЕ | СТАРОЕ |
---|---|
измерение (величины): Процесс экспериментального получения одного или более значений величины, которые могут быть обоснованно приписаны величине (РМГ-29-2013). Совокупность операций, имеющих целью определение значения величины (ГОСТ 34100.3) | Измерение: Совокупность операций по применению технического средства, хранящего единицу физической величины, о беспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины (РМГ-29-99) |
Таким образом, если ещё совсем недавно процесс измерения воспринимался исключительно как сравнение с единицей величины, то есть с эталоном, то теперь — это совокупность любых операций, которые приводят к какому-то значению.
Заметим, что такая трансформация понятий естественна: старые метрологические концепции выросли из эпохи палат мер и весов, а сегодня для многих измерений вообще не существует эталонов — например, в информационных технологиях, в медицинских и биологических исследованиях, при измерении интенсивности транспортных потоков и пр.
Следствием этих фундаментальных изменений стал постепенный отказ от применения термина «погрешность»:
Погрешность измерений: разность между измеренным значением величины и опорным значением величины ( опорное значение = значение величины, которое используют в качестве основы для сопоставления со значениями величин того же рода; опорное значение величины может быть истинным значением величины, подлежащей измерению, в этом случае оно неизвестно, или принятым значением величины, в этом случае оно известно [РМГ-29-2013]).
Опорное значение величины заранее известно на эталоне, когда, например, калибруется какое-то средство измерения. Но при натурных измерениях опорное значение неизвестно, поэтому и говорить о погрешности в этих случаях весьма проблематично.
Более того, как хорошо объяснено в ГОСТ 34100.3 (Приложение D), при натурных измерениях мы почти никогда не измеряем то, что хотим измерить: мы имеем дело с реализованной величиной. Простейший пример — измерение шума оборудования при наличии помех. Мы измеряем суммарные уровни звука и приписываем их испытуемой машине. Конечно, мы стараемся исключить или учесть помехи, однако не можем сделать это с абсолютной точностью.
Таким образом, возникает ещё одна составляющая неуверенности в результате (неопределенности), связанная с учетом различий между реализованной величиной и величиной, подлежащей измерению.
В отличие от погрешности натурных измерений, составляющие неопределенности (отклонения реализованной величины от измеряемой, погрешности средств измерений и пр.) могут быть оценены. Это позволяет нам прогнозировать результаты последующих замеров: с некоторой вероятностью мы можем ожидать, что они окажутся в пределах области значений, размеры которой характеризуются рассчитанной нами неопределенностью. Для многих практических применений этого вполне достаточно, так как позволяет сопоставлять результаты измерений различных лабораторий и использовать их в технических расчетах.
В руководствах по оценке неопределенности (ISO/IEC 98-3:2003) соотношение понятий «значение величины», «погрешность», «неопределенность» рассмотрено, можно сказать, на философском уровне осмысления, который нам представляется избыточным для большинства практиков. На наш взгляд, сказанного выше вполне достаточно для понимания сути вопроса.
В каких же случаях следует пользоваться понятиями «неопределенность» и «погрешность». Ответ на этот вопрос находим в РМГ-91-2009 (далее приведены выдержки из этого документа):
В аттестованных методиках измерений (МВИ) устанавливают совокупность операций и правил, выполнение которых обеспечивает получение результата измерения с погрешностью, не превышающей допускаемых пределов (норм погрешности измерений). В таких МВИ рекомендуется использовать понятие «погрешность» в виде нормативных пределов погрешностей. Результаты измерения по этим МВИ не требуется сопровождать конкретной характеристикой точности.
Примечание авторов статьи: примеры таких МВИ — методики прямых измерений.
Результаты измерения по МВИ, характеристики точности которых определяют в процессе или после их применения, рекомендуется сопровождать оценками неопределенности измерения. Оснований для оперирования погрешностью в таких случаях нет.
Нормирование метрологических характеристик средств измерений осуществляют, оперируя понятием «погрешность» и руководствуясь ГОСТ 8.401 и ГОСТ 8.009. При этом характеристики погрешности используют как пределы допускаемых погрешностей средств измерений данного типа.
До недавнего времени гигиеническая оценка физических факторов осуществлялась без учета неопределенности, хотя требования приводить её в протоколах измерения действуют уже не один год. В 2017 году вступили в силу новые санитарные нормы и правила СанПиН 2.2.4.3359-16, в пункте 1.5 которых сказано: «Оценка фактических уровней производственных физических факторов должна проводиться с учетом неопределенности измерений». Каким же образом это делать? В настоящее время существует несколько подходов к учету неопределенности при подтверждении соответствия требованиям.
а) Подход ГОСТ ИСО 10576-1: если интервал неопределенности результатов измерений находится внутри области допустимых значений, принимают решение о соответствии; если интервал неопределенности результатов измерений находится внутри области недопустимых значений, то принимают решение о несоответствии; если. не может быть принято решение ни о соответствии, ни о несоответствии требованиям, результат оценки является неокончательным. Этот подход вполне обоснован, если мы хотим проверить, соответствует ли какая-то техническая характеристика нормативному значению с учетом пределов допуска. Однако его применение для сопоставления измеренного значения с гигиеническим нормативом, устанавливающим пределы безопасности среды обитания, вызывает сомнения. Ни один из опрошенных нами гигиенистов не осмелился однозначно ответить на вопрос: является ли, с точки зрения безопасности здоровья, приемлемой ситуация, когда с 50%-й вероятностью измеряемый фактор находится в зоне недопустимых значений? И если нет, то почему мы должны считать такой случай не окончательным решением?
б) Подход ГОСТ 23337-2014: решение о соответствии принимается только в том случае, если соответствующая (чаще всего верхняя) граница одностороннего интервала неопределенности не превышает нормативного значения. Этот подход можно переформулировать простой, хотя и не очень точной фразой: «неопределенность надо прибавлять к результату», то есть учитывать в худшую сторону.
Примерно такой же подход ещё недавно действовал в технической акустике: в 1996 году ТК29 МЭК была одобрена политика учета неопределенности, ключевым критерием которой был следующий: «измеренные отклонения от нормативных значений, увеличенные на расширенную неопределенность измерений, не должны выходить за пределы допуска». То есть и в этом случае с нормативом (пределом допуска) сравнивалось измеренное значение (отклонение), увеличенное на расширенную неопределенность.
в) Подход ГОСТ 12.1.003 (последняя редакция): с нормативом сравнивается непосредственно результат измерения (без прибавления/вычитания неопределенности), при этом неопределенность не должна выходить за оговоренные рамки. Такой подход достаточно популярен сегодня в технике, например, он реализован в уточненной политике уже упомянутого выше ТК29 МЭК. Однако применить его в практике гигиенического регулирования всех физических факторов неионизирующей природы в данный момент очень сложно из-за того, что непонятны принципы назначения максимально допустимых значений неопределенности для всех нормируемых показателей. Возможно, через какое-то время практика использования неопределенности в санитарно-эпидемиологической сфере позволит установить такие нормативные значения.
Учет неопределённости при оценке результатов измерений физических факторов.