что такое буферизация в оперативной памяти
Разница между буферизованной и небуферизованной оперативной памятью
главное отличие между буферизованным и небуферизованным ОЗУ является то, что Буферизованная RAM содержит регистр между DRAM и контроллером памяти, в то время как небуферизованная RAM не содержит реги
Содержание:
главное отличие между буферизованным и небуферизованным ОЗУ является то, что Буферизованная RAM содержит регистр между DRAM и контроллером памяти, в то время как небуферизованная RAM не содержит регистр между DRAM и контроллером памяти.
Ключевые области покрыты
1. Что такое буферная память
— определение, функциональность
2. Что такое небуферизованная оперативная память
— определение, функциональность
3. Разница между буферизованной и небуферизованной оперативной памятью
— Сравнение основных различий
Основные условия
ОЗУ с буферизацией, ОЗУ, ОЗУ, SRAM, ОЗУ без буфера
Что такое буферизованная RAM
В буферизованном ОЗУ имеется дополнительный регистр между DRAM и контроллером памяти. Это также известно как зарегистрированная память. Эта память помогает снизить электрическую нагрузку на контроллер памяти. Это позволяет одной системе оставаться стабильной без использования большего количества модулей памяти, чем в обычной системе.
Буферизованная оперативная память используется для высокопроизводительных систем, таких как серверы и системы, которые требуют стабильной операционной среды. Он редко используется на настольных компьютерах и ноутбуках. Иногда можно распознать буферизованную память в оперативной памяти, поскольку в середине модуля находятся дополнительные микросхемы.
Что такое небуферизованная оперативная память
В небуферизованном ОЗУ нет регистра между DRAM и контроллером памяти. Итак, есть прямой доступ к контроллеру памяти. Это также создает высокую электрическую нагрузку на контроллер памяти.
Небуферизованная оперативная память больше подходит для настольных компьютеров, ноутбуков и т. Д., Поскольку она дешевле. С другой стороны, небуферизованная оперативная память не обеспечивает большой надежности хранимых данных. Это также не очень стабильно.
Разница между буферизованной и небуферизованной оперативной памятью
Определение
Синонимы
надежность
Существует высокая надежность хранимых данных в буферизованном ОЗУ. Надежность хранимых данных в небуферизованной оперативной памяти меньше.
Влияние на контроллер памяти
В то время как буферизованная RAM создает меньшую электрическую нагрузку на контроллер памяти, небуферизованная RAM увеличивает нагрузку на память.
стабильность
Буферизованная RAM обеспечивает большую стабильность в системе, чем небуферизованная RAM.
Стоимость
ОЗУ с буферизацией обходится дороже, чем ОЗУ без буферизации.
Приложения
Принимая во внимание, что буферизованная RAM используется для серверов и других критически важных систем, которым требуется стабильная операционная среда, небуферизованная RAM используется для обычных настольных компьютеров и ноутбуков и т. Д.
Заключение
Разница между буферизованной и небуферизованной RAM состоит в том, что буферизованная RAM содержит регистр между DRAM и контроллером памяти, в то время как небуферизованная RAM не содержит регистр между DRAM и контроллером памяти.
Ссылка:
Буферизация (информатика)
Буферизация (от англ. buffer ) — метод организации обмена, в частности, ввода и вывода данных в компьютерах и других вычислительных устройствах, который подразумевает использование буфера для временного хранения данных. При вводе данных одни устройства или процессы производят запись данных в буфер, а другие — чтение из него, при выводе — наоборот. Процесс, выполнивший запись в буфер, может немедленно продолжать работу, не ожидая, пока данные будут обработаны другим процессом, которому они предназначены. В свою очередь, процесс, обработавший некоторую порцию данных, может немедленно прочитать из буфера следующую порцию. Таким образом, буферизация позволяет процессам, производящим ввод, вывод и обработку данных, выполняться параллельно, не ожидая, пока другой процесс выполнит свою часть работы. Поэтому буферизация данных широко применяется в многозадачных ОС.
Буферизация по принципу своего построения бывает прозрачная (пример — кэширование диска на запись, когда процессы или устройства не подозревают о существовании процедуры буферизации между ними), и непрозрачная, когда сторонам для совершения обмена требуются знания о буфере. Наглядный пример. С бумажными почтовыми отправлениями совершается инкапсуляция в мешки с почтой, далее в вагоны поездов, автомобили и прочие транспортные средства. Отправитель же и получатель обязаны знать только один уровень буферизации — почтовые ящики. Остальные уровни прозрачны для пользователя.
Термины «прозрачная» и «непрозрачная» буферизация не совсем удачны, поскольку могут несколько сбивать с толку. В качестве более удачных можно было бы предложить термины, соответственно, «невидимая» и «видимая буферизация».
Применение буферизации
Различные виды буферизации применяются в компьютерной графике, для обработки и вывода на экран изображений (см. двойная и тройная буферизация), причём они могут быть реализованы как аппаратно, так и программно.
Типы оперативной памяти. Небуферизированная память, с ECC, регистровая с ECC.
Всё больше людей сталкиваются с проблемой несовместимости оперативной памяти с компьютером. Устанавливают память, а она не работает и компьютер не включается. Многие пользователи просто не знают, что существуют несколько типов памяти и какой именно тип подходит к их компьютеру, а какой нет. В данном руководстве я кратко раскажу из личного опыта об оперативной памяти и где каждая применяется.
Типы памяти используемые в компьютерах:
2. Память c коррекцией ошибок (Память с ECC). Обычная Небуферизованная память с коррекцией ошибок. Такая память ставится обычно в фирменные (брендовые) компьютеры продаваемые в Европе (НЕ СЕРВЕРА), плюсом этой памяти является её большая надёжность при работе. Большинство ошибок при работе памяти удаётся исправить во время работы, даже если они появляются, не теряя данные. Обычно на каждой планке такой памяти 9 или 18 микросхем памяти, добавляется одна или 2 микросхемы. Большинство обычных компьютеров (не серверов) и материнских плат могут работать с ECC памятью. У такой памяти маркировка как правило заканчивается буквой E (ECC), например DDR2 PC-4200E, DDR2 PC-6400E, DDR3 PC-8500E или DDR3 PC-10600E. Фото небуферизированной памяти c ECC можно видеть ниже.
Различие памяти с ECC и памяти без ECC можно видеть на фото:
Хоть большинство продаваемых плат и поддерживают эту память, но совместимость с конкретной платой и процессором лучше узнать заранее до покупки. Из личного опыта 90-95% материнских плат и процессоров могут работать с памятью ECC. Из тех, что НЕ могут работать: платы на чипсетах Intel G31, Intel G33, Intel G41, Intel G43, Intel 865PE. Все материнские платы и процессоры начиная с первого поколения Intel Core все могут работать с ECC памятью и от материнских плат это не зависит. Под AMD процессоры вообще практически все материнские платы могут работать с ECC памятью, за исключением случаев индивидуальной несовместимости (такое бывает в редчайших случаях).
3. Регистровая память (Registered). СЕРВЕРНЫЙ тип памяти. Обычно он всегда выпускается с ECC (коррекцией ошибок) и c микросхемой «Буфером». Микросхема «буфер» позволяет увеличить максимальное количество планок памяти, которые можно подключить к шине не перегружая её, но это уже лишние данные, не будем углубляться в теорию. В последнее время понятия буферизованный и регистровый почти не различают. Если утрировать: регистровая память = буферизованная. Эта память работает ТОЛЬКО на серверных материнских платах способных работать с памятью черем микросхему «буфер».
Помните! Регистровая память с ECC со 100% вероятностью НЕ РАБОТАЕТ на обычных материнских платах. Она работает только на серверах!
4. FB-DIMM Fully Buffered DIMM (Полностью буферизованная DIMM), — стандарт компьютерной памяти, который используется для повышения надёжности, скорости, и плотности подсистемы памяти. В традиционных стандартах памяти линии данных подключаются от контроллера памяти непосредственно к линиям данных каждого модуля DRAM (иногда через буферные регистры, по одной микросхеме регистра на 1-2 чипа памяти). С увеличением ширины канала или скорости передачи данных, качество сигнала на шине ухудшается, усложняется разводка шины. Это ограничивает скорость и плотность памяти. FB-DIMM использует другой подход для решения этих проблем. Это дальнейшее развитие идеи registered модулей — Advanced Memory Buffer осуществляет буферизацию не только сигналов адреса, но и данных, и использует последовательную шину к контроллеру памяти вместо параллельной.
Модуль FB-DIMM имеет 240 контактов и одинаковую длину с другими модулями DDR DIMM, но отличается по форме выступов. Подходит только для серверных платформ.
Спецификации FB-DIMM, как и другие стандарты памяти, опубликованы JEDEC.
Компания Intel использовала память FB-DIMM в системах с процессорами Xeon серий 5000 и 5100 и новее (2006—2008 годы). Память FB-DIMM поддерживается серверными чипсетами 5000, 5100, 5400, 7300; только с процессорами Xeon, основанными на микроархитектуре Core (сокет LGA771).
В сентябре 2006 года компания AMD также отказалась от планов по использованию памяти FB-DIMM.
Если Вы затрудняетесь с выбором памяти для своего компьютера, то уточните у продавца сообщив ему модель материнской платы и модель процессора.
Память с пониженным питанием, «L» память
Могут ли работать модули DDR3 вместе с DDR3L? И можно ли ставить модули DDR3L вместо DDR3? Да, в большинстве случаев эти модули имеют обратную совместимость и могут быть взаимозаменяемыми, но есть и исключение. Объясню этот момент более подробно. Если взять, например, спецификацию на модуль памяти SODIMM 4GB DDR3L Kingston KVR16LS11/4 1Rx8 512M x 64-Bit PC3L-12800CL11 204-Pin, то в ней указано, что питание на модуль возможно двух стандартов:
1.45V) and 1.5V (1.425V
1.575V) Power Supply;
VDDQ = 1.35V (1.28V
1.45V) and 1.5V (1.425V
Можно сделать ещё один вывод. Память с пониженным питанием более универсальна, т.к. может работать в любых системах, как в тех, что расчитаны на пониженное питание памяти, так и в тех, где питание памяти стандартное.
Примечание: Я не рекомендую ставить «L» модули вместе с оверклокерскими модулями, т.к. оверклокерские модули рассчитаны наоборот на повышенное напряжение, а оно может быть выше верхнего предела напряжения для «L» модулей. В таком случае «L» память может не выдержать и перестать функционировать навсегда.
Что такое регистровая RDIMM-память и зачем нужен ECC
Содержание
Содержание
Что такое RDIMM, для чего нужен регистр
Оперативная память в сокращении может называться ОЗУ. Ее также называют оперативным запоминающим устройством, памятью с произвольным доступом, RAM. ОЗУ также можно ласково назвать «оперативкой». RAM логически состоит из ячеек памяти. Каждая ячейка хранит количество бит, равное степени двойки. 2^3=8 бит, 2^4=16 бит, 2^5=32 бит, 2^6=64 бит. У каждой ячейки памяти есть свой адрес. Адрес ячейки «оперативки» выглядит следующим образом: FFFFFFFFF.
Регистровой памятью (Registered DIMM, RDIMM) называют модули ОЗУ, которые имеют на «борту» отдельный регистр для адресов «оперативки» и команд.
Контроллер ОЗУ в процессоре обращается к регистрам, регистры же направляют информацию в микросхемы памяти. Такая организация «оперативки» позволяет увеличить количество модулей на канал RAM за счет снижения электрической нагрузки на контроллер памяти. Контроллер находится либо в северном мосту материнской платы, либо в процессоре. Также вдвое уменьшается емкость модулей памяти, если модуль содержит два регистра.
Регистровая память отличается от обычной, небуферизованной «оперативки», более высокими задержками при чтени и записи информации в модулях ОЗУ. Это происходит из-за того, что модули содержат дополнительный промежуточный узел — буфер. Чтение/запись производит контроллер памяти в процессоре или северном мосту материнской платы. Работа с этим узлом, естественно, требует дополнительного времени работы. Но при этом отметим то, что уменьшается нагрузка на процессор, так как буфер отвечает за непосредственную работу с банками памяти.
Каждый модуль ОЗУ содержит микросхему SPD (Serial Presence Detect). Данная микросхема содержит прошивку модуля памяти. Эта прошивка определяет работу более простых микросхем.
Регистровая и буферизованная память — одно и то же
Регистровая память — это буферизованная память. Как было обозначено выше — регистр — это буфер для адресов и команд при работе с памятью. Процессор или северный мост материнской платы отправляют данные, адреса ячеек памяти и команды. Регистры выполняют команды по указанным адресам.
Такая память стоит дороже обычной, небуферизованной памяти. Используется она исключительно в серверах, потому что позволяет получить больший объем памяти на один процессор в сервере.
Что такое FB-DIMM
FB-DIMM, Full Buffered Dual Inline Memory Module — полностью буферизованная DIMM — это планки ОЗУ DDR2. Плашки ОЗУ при этом используют последовательный интерфейс передачи данных между модулями памяти и контроллером «оперативки». В отличие от стандартных модулей RAM, они используют не 240-pin, а 96-pin из 240 возможных пинов. Такая организация работы позволяет организовывать с помощью контроллеров памяти большее количество каналов на материнской плате. Вплоть до 6 каналов. Данные модули памяти несовместимы с обычными планками «оперативки».
Последовательный интерфейс — это интерфейс передачи данных, при работе которого данные передаются по одному проводу или дорожке на печатной плате друг за другом. Таких проводов (дорожек) может быть несколько, но принцип передачи данных при этом не меняется.
Advanced Memory Buffer, AMB — микросхема, которая организует работу модулей памяти FB-DIMM. Эта микросхема располагается прямо на планке «оперативки».
В один канал памяти при такой организации работы модулей ОЗУ возможна установка до 8 планок «оперативки». Это позволяет, в случае с RAM DDR2, добиться емкости ОЗУ до 192 Гигабайт на один сервер.
В связи с тем, что микросхема AMB добавляет свои задержки в работу модуля памяти, данные плашки работают несколько медленнее модулей RDIMM, регистровой ОЗУ. Но, так как общее количество памяти в данном случае возрастает, то общая производительность системы также возрастает.
Краткая история оперативной памяти
Ниже приводится краткая история развития типов ОЗУ. Начинаем мы ее со времени выпуска памяти SDRAM. Это произошло в 1996 году. Пропускная способность данной RAM составила 1.1 GBps.
Следующей памятью в таблице указана память RDRAM. Она была выпущена в 1998 году. Это была абсолютно новая архитектура ОЗУ. Совершенно новый стандарт от фирмы Rambus. Было выпущено несколько поколений памяти. Она отличалась более высокими частотами, стабильными таймингами, вот только при этом задержки функционирования памяти были немного выше. К сожалению, данная память не выдержала конкуренции на рынке и вынуждена была сойти со сцены рынка памяти.
Следующими в таблице указаны линейки RAM DDR. Double Data Rate Synchronous Dynamic Random Access Memory — синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных. Этот стандарт ОЗУ был выпущен на рынок в 2000 году. Данная память используется и на текущий момент. При этом развивается стандарт для достижения более высоких скоростей функционирования.
Последним типом RAM DDR, выпущенным на рынок, на данный момент является память DDR4.
Анатомия RAM
У каждого компьютера есть ОЗУ, встроенное в процессор или находящееся на отдельной подключенной к системе плате — вычислительные устройства просто не смогли бы работать без оперативной памяти. ОЗУ — потрясающий образец прецизионного проектирования, однако несмотря на тонкость процессов изготовления, память ежегодно производится в огромных объёмах. В ней миллиарды транзисторов, но она потребляет только считанные ватты мощности. Учитывая большую важность памяти, стоит написать толковый анализ её анатомии.
Итак, давайте приготовимся к вскрытию, выкатим носилки и отправимся в анатомический театр. Настало время изучить все подробности каждой ячейки, из которых состоит современная память, и узнать, как она работает.
Зачем же ты, RAM-ео?
Процессорам требуется очень быстро получать доступ к данным и командам, чтобы программы выполнялись мгновенно. Кроме того, им нужно, чтобы при произвольных или неожиданных запросах не очень страдала скорость. Именно поэтому для компьютера так важно ОЗУ (RAM, сокращение от random-access memory — память с произвольным доступом).
Существует два основных типа RAM: статическая и динамическая, или сокращённо SRAM и DRAM.
Мы будем рассматривать только DRAM, потому что SRAM используется только внутри процессоров, таких как CPU или GPU. Так где же находится DRAM в наших компьютерах и как она работает?
Большинству людей знакома RAM, потому что несколько её планок находится рядом с CPU (центральным процессором, ЦП). Эту группу DRAM часто называют системной памятью, но лучше её называть памятью CPU, потому что она является основным накопителем рабочих данных и команд процессора.
Как видно на представленном изображении, DRAM находится на небольших платах, вставляемых в материнскую (системную) плату. Каждую плату обычно называют DIMM или UDIMM, что расшифровывается как dual inline memory module (двухсторонний модуль памяти) (U обозначает unbuffered (без буферизации)). Подробнее мы объясним это позже; пока только скажем, что это самая известная RAM любого компьютера.
Она не обязательно должна быть сверхбыстрой, но современным ПК для работы с большими приложениями и для обработки сотен процессов, выполняемых в фоновом режиме, требуется много памяти.
Ещё одним местом, где можно найти набор чипов памяти, обычно является графическая карта. Ей требуется сверхбыстрая DRAM, потому что при 3D-рендеринге выполняется огромное количество операций чтения и записи данных. Этот тип DRAM предназначен для несколько иного использования по сравнению с типом, применяемым в системной памяти.
Ниже вы видите GPU, окружённый двенадцатью небольшими пластинами — это чипы DRAM. Конкретно этот тип памяти называется GDDR5X, о нём мы поговорим позже.
Графическим картам не нужно столько же памяти, как CPU, но их объём всё равно достигает тысяч мегабайт.
Не каждому устройству в компьютере нужно так много: например, жёстким дискам достаточно небольшого количества RAM, в среднем по 256 МБ; они используются для группировки данных перед записью на диск.
На этих фотографиях мы видим платы HDD (слева) и SSD (справа), на которых отмечены чипы DRAM. Заметили, что чип всего один? 256 МБ сегодня не такой уж большой объём, поэтому вполне достаточно одного куска кремния.
Узнав, что каждый компонент или периферийное устройство, выполняющее обработку, требует RAM, вы сможете найти память во внутренностях любого ПК. На контроллерах SATA и PCI Express установлены небольшие чипы DRAM; у сетевых интерфейсов и звуковых карт они тоже есть, как и у принтеров со сканнерами.
Если память можно встретить везде, она может показаться немного скучной, но стоит вам погрузиться в её внутреннюю работу, то вся скука исчезнет!
Скальпель. Зажим. Электронный микроскоп.
У нас нет всевозможных инструментов, которые инженеры-электронщики используют для изучения своих полупроводниковых творений, поэтому мы не можем просто разобрать чип DRAM и продемонстрировать вам его внутренности. Однако такое оборудование есть у ребят из TechInsights, которые сделали этот снимок поверхности чипа:
Если вы подумали, что это похоже на сельскохозяйственные поля, соединённые тропинками, то вы не так далеки от истины! Только вместо кукурузы или пшеницы поля DRAM в основном состоят из двух электронных компонентов:
Синими и зелёными линиями обозначены соединения, подающие напряжение на МОП-транзистор и конденсатор. Они используются для считывания и записи данных в ячейку, и первой всегда срабатывает вертикальная (разрядная) линия.
Канавочный конденсатор, по сути, используется в качестве сосуда для заполнения электрическим зарядом — его пустое/заполненное состояние даёт нам 1 бит данных: 0 — пустой, 1 — полный. Несмотря на предпринимаемые инженерами усилия, конденсаторы не способны хранить этот заряд вечно и со временем он утекает.
Это означает, что каждую ячейку памяти нужно постоянно обновлять по 15-30 раз в секунду, хотя сам этот процесс довольно быстр: для обновления набора ячеек требуется всего несколько наносекунд. К сожалению, в чипе DRAM множество ячеек, и во время их обновления считывание и запись в них невозможна.
К каждой линии подключено несколько ячеек:
Строго говоря, эта схема неидеальна, потому что для каждого столбца ячеек используется две разрядные линии — если бы мы изобразили всё, то схема бы стала слишком неразборчивой.
Полная строка ячеек памяти называется страницей, а длина её зависит от типа и конфигурации DRAM. Чем длиннее страница, тем больше в ней бит, но и тем большая электрическая мощность нужна для её работы; короткие страницы потребляют меньше мощности, но и содержат меньший объём данных.
Однако нужно учитывать и ещё один важный фактор. При считывании и записи на чип DRAM первым этапом процесса является активация всей страницы. Строка битов (состоящая из нулей и единиц) хранится в буфере строки, который по сути является набором усилителей считывания и защёлок, а не дополнительной памятью. Затем активируется соответствующий столбец для извлечения данных из этого буфера.
Если страница слишком мала, то чтобы успеть за запросами данных, строки нужно активировать чаще; и наоборот — большая страница предоставляет больше данных, поэтому активировать её можно реже. И даже несмотря на то, что длинная строка требует большей мощности и потенциально может быть менее стабильной, лучше стремиться к получению максимально длинных страниц.
Если собрать вместе набор страниц, то мы получим один банк памяти DRAM. Как и в случае страниц, размер и расположение строк и столбцов ячеек играют важную роль в количестве хранимых данных, скорости работы памяти, энергопотреблении и так далее.
Например, схема может состоять из 4 096 строк и 4 096 столбцов, при этом полный объём одного банка будет равен 16 777 216 битам или 2 мегабайтам. Но не у всех чипов DRAM банки имеют квадратную структуру, потому что длинные страницы лучше, чем короткие. Например, схема из 16 384 строк и 1 024 столбцов даст нам те же 2 мегабайта памяти, но каждая страница будет содержать в четыре раза больше памяти, чем в квадратной схеме.
Все страницы в банке соединены с системой адресации строк (то же относится и к столбцам) и они контролируются сигналами управления и адресами для каждой строки/столбца. Чем больше строк и столбцов в банке, тем больше битов должно использоваться в адресе.
Для банка размером 4 096 x 4 096 для каждой системы адресации требуется 12 бит, а для банка 16 384 x 1 024 потребуется 14 бит на адреса строк и 10 бит на адреса столбцов. Стоит заметить, что обе системы имеют суммарный размер 24 бита.
Если бы чип DRAM мог предоставлять доступ к одной странице за раз, то это было бы не особо удобно, поэтому в них упаковано несколько банков ячеек памяти. В зависимости от общего размера, чип может иметь 4, 8 или даже 16 банков — чаще всего используется 8 банков.
Все эти банки имеют общие шины команд, адресов и данных, что упрощает структуру системы памяти. Пока один банк занят работой с одной командой, другие банки могут продолжать выполнение своих операций.
Весь чип, содержащий все банки и шины, упакован в защитную оболочку и припаян к плате. Она содержит электропроводники, подающие питание для работы DRAM и сигналов команд, адресов и данных.
На фотографии выше показан чип DRAM (иногда называемый модулем), изготовленный компанией Samsung. Другими ведущими производителями являются Toshiba, Micron, SK Hynix и Nanya. Samsung — крупнейший производитель, он имеет приблизительно 40% мирового рынка памяти.
Каждый изготовитель DRAM использует собственную систему кодирования характеристик памяти; на фотографии показан чип на 1 гигабит, содержащий 8 банков по 128 мегабита, выстроенных в 16 384 строки и 8 192 столбца.
Выше по рангу
Компании-изготовители памяти берут несколько чипов DRAM и устанавливают их на одну плату, называемую DIMM. Хотя D расшифровывается как dual (двойная), это не значит, что на ней два набора чипов. Под двойным подразумевается количество электрических контактов в нижней части платы; то есть для работы с модулями используются обе стороны платы.
Сами DIMM имеют разный размер и количество чипов:
На фотографии сверху показана стандартная DIMM для настольного ПК, а под ней находится так называемая SO-DIMM (small outline, «DIMM малого профиля»). Маленький модуль предназначен для ПК малого форм-фактора, например, ноутбуков и компактных настольных компьютеров. Из-за малого пространства уменьшается количество используемых чипов, изменяется скорость работы памяти, и так далее.
Существует три основных причины для использования нескольких чипов памяти на DIMM:
То есть каждому DIMM, который устанавливается в компьютер с Ryzen, потребуется восемь модулей DRAM (8 чипов x 8 бит = 64 бита). Можно подумать, что графическая карта 5700 XT будет иметь 32 чипа памяти, но у неё их только 8. Что же это нам даёт?
В чипы памяти, предназначенные для графических карт, устанавливают больше банков, обычно 16 или 32, потому что для 3D-рендеринга необходим одновременный доступ к большому объёму данных.
Один ранг и два ранга
Множество модулей памяти, «заполняющих» шину данных контроллера памяти, называется рангом, и хотя к контроллеру можно подключить больше одного ранга, за раз он может получать данные только от одного ранга (потому что ранги используют одну шину данных). Это не вызывает проблем, потому что пока один ранг занимается ответом на переданную ему команду, другому рангу можно передать новый набор команд.
Платы DIMM могут иметь несколько рангов и это особенно полезно, когда вам нужно огромное количество памяти, но на материнской плате мало разъёмов под RAM.
Так называемые схемы с двумя (dual) или четырьмя (quad) рангами потенциально могут обеспечить большую производительность, чем одноранговые, но увеличение количества рангов быстро повышает нагрузку на электрическую систему. Большинство настольных ПК способно справиться только с одним-двумя рангами на один контроллер. Если системе нужно больше рангов, то лучше использовать DIMM с буферизацией: такие платы имеют дополнительный чип, облегчающий нагрузку на систему благодаря хранению команд и данных в течение нескольких циклов, прежде чем передать их дальше.
Множество модулей памяти Nanya и один буферный чип — классическая серверная RAM
Но не все ранги имеют размер 64 бита — используемые в серверах и рабочих станциях DIMM часто размером 72 бита, то есть на них есть дополнительный модуль DRAM. Этот дополнительный чип не обеспечивает повышение объёма или производительности; он используется для проверки и устранения ошибок (error checking and correcting, ECC).
Вы ведь помните, что всем процессорам для работы нужна память? В случае ECC RAM небольшому устройству, выполняющему работу, предоставлен собственный модуль.
Шина данных в такой памяти всё равно имеют ширину всего 64 бита, но надёжность хранения данных значительно повышается. Использование буферов и ECC только незначительно влияет на общую производительность, зато сильно повышает стоимость.
Жажда скорости
У всех DRAM есть центральный тактовый сигнал ввода-вывода (I/O, input/output) — напряжение, постоянно переключающееся между двумя уровнями; он используется для упорядочивания всего, что выполняется в чипе и шинах памяти.
Если бы мы вернулись назад в 1993 год, то смогли бы приобрести память типа SDRAM (synchronous, синхронная DRAM), которая упорядочивала все процессы с помощью периода переключения тактового сигнала из низкого в высокое состояние. Так как это происходит очень быстро, такая система обеспечивает очень точный способ определения времени выполнения событий. В те времена SDRAM имела тактовые сигналы ввода-вывода, обычно работавшие с частотой от 66 до 133 МГц, и за каждый такт сигнала в DRAM можно было передать одну команду. В свою очередь, чип за тот же промежуток времени мог передать 8 бит данных.
Быстрое развитие SDRAM, ведущей силой которого был Samsung, привело к созданию в 1998 году её нового типа. В нём передача данных синхронизировалась по повышению и падению напряжения тактового сигнала, то есть за каждый такт данные можно было дважды передать в DRAM и обратно.
Как же называлась эта восхитительная новая технология? Double data rate synchronous dynamic random access memory (синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Обычно её просто называют DDR-SDRAM или для краткости DDR.
Память DDR быстро стала стандартом (из-за чего первоначальную версию SDRAM переименовали в single data rate SDRAM, SDR-DRAM) и в течение последующих 20 лет оставалась неотъемлемой частью всех компьютерных систем.
Прогресс технологий позволил усовершенствовать эту память, благодаря чему в 2003 году появилась DDR2, в 2007 году — DDR3, а в 2012 году — DDR4. Каждая новая версия обеспечивала повышение производительности благодаря ускорению тактового сигнала ввода-вывода, улучшению систем сигналов и снижению энергопотребления.
DDR2 внесла изменение, которое мы используем и сегодня: генератор тактовых сигналов ввода-вывода превратился в отдельную систему, время работы которой задавалось отдельным набором синхронизирующих сигналов, благодаря чему она стала в два раза быстрее. Это аналогично тому, как CPU используют для упорядочивания работы тактовый сигнал 100 МГц, хотя внутренние синхронизирующие сигналы работают в 30-40 раз быстрее.
DDR3 и DDR4 сделали шаг вперёд, увеличив скорость тактовых сигналов ввода-вывода в четыре раза, но во всех этих типах памяти шина данных для передачи/получения информации по-прежнему использовала только повышение и падение уровня сигнала ввода-вывода (т.е. удвоенную частоту передачи данных).
Сами чипы памяти не работают на огромных скоростях — на самом деле, они шевелятся довольно медленно. Частота передачи данных (измеряемая в миллионах передач в секунду — millions of transfers per second, MT/s) в современных DRAM настолько высока благодаря использованию в каждом чипе нескольких банков; если бы на каждый модуль приходился только один банк, всё работало бы чрезвычайно медленно.
Тип DRAM | Обычная частота чипа | Тактовый сигнал ввода-вывода | Частота передачи данных |
SDR | 100 МГц | 100 МГц | 100 MT/s |
DDR | 100 МГц | 100 МГц | 200 MT/s |
DDR2 | 200 МГц | 400 МГц | 800 MT/s |
DDR3 | 200 МГц | 800 МГц | 1600 MT/s |
DDR4 | 400 МГц | 1600 МГц | 3200 MT/s |
Каждая новая версия DRAM не обладает обратной совместимостью, то есть используемые для каждого типа DIMM имеют разные количества электрических контактов, разъёмы и вырезы, чтобы пользователь не мог вставить память DDR4 в разъём DDR-SDRAM.
Сверху вниз: DDR-SDRAM, DDR2, DDR3, DDR4
DRAM для графических плат изначально называлась SGRAM (synchronous graphics, синхронная графическая RAM). Этот тип RAM тоже подвергался усовершенствованиям, и сегодня его для понятности называют GDDR. Сейчас мы достигли версии 6, а для передачи данных используется система с учетверённой частотой, т.е. за тактовый цикл происходит 4 передачи.
Тип DRAM | Обычная частота памяти | Тактовый сигнал ввода-вывода | Частота передачи данных |
GDDR | 250 МГц | 250 МГц | 500 MT/s |
GDDR2 | 500 МГц | 500 МГц | 1000 MT/s |
GDDR3 | 800 МГц | 1600 МГц | 3200 MT/s |
GDDR4 | 1000 МГц | 2000 МГц | 4000 MT/s |
GDDR5 | 1500 МГц | 3000 МГц | 6000 MT/s |
GDDR5X | 1250 МГц | 2500 МГц | 10000 MT/s |
GDDR6 | 1750 МГц | 3500 МГц | 14000 MT/s |
Кроме более высокой частоты передачи, графическая DRAM обеспечивает дополнительные функции для ускорения передачи, например, возможность одновременного открытия двух страниц одного банка, работающие в DDR шины команд и адресов, а также чипы памяти с гораздо большими скоростями тактовых сигналов.
Какой же минус у всех этих продвинутых технологий? Стоимость и тепловыделение.
Один модуль GDDR6 примерно вдвое дороже аналогичного чипа DDR4, к тому же при полной скорости он становится довольно горячим — именно поэтому графическим картам с большим количеством сверхбыстрой RAM требуется активное охлаждение для защиты от перегрева чипов.
Скорость битов
Производительность DRAM обычно измеряется в количестве битов данных, передаваемых за секунду. Ранее в этой статье мы говорили, что используемая в качестве системной памяти DDR4 имеет чипы с 8-битной шириной шины, то есть каждый модуль может передавать до 8 бит за тактовый цикл.
То есть если частота передачи данных равна 3200 MT/s, то пиковый результат равен 3200 x 8 = 25 600 Мбит в секунду или чуть больше 3 ГБ/с. Так как большинство DIMM имеет 8 чипов, потенциально можно получить 25 ГБ/с. Для GDDR6 с 8 модулями этот результат был бы равен 440 ГБ/с!
Обычно это значение называют полосой пропускания (bandwidth) памяти; оно является важным фактором, влияющим на производительность RAM. Однако это теоретическая величина, потому что все операции внутри чипа DRAM не происходят одновременно.
Чтобы разобраться в этом, давайте взглянем на показанное ниже изображение. Это очень упрощённое (и нереалистичное) представление того, что происходит, когда данные запрашиваются из памяти.
На первом этапе активируется страница DRAM, в которой содержатся требуемые данные. Для этого памяти сначала сообщается, какой требуется ранг, затем соответствующий модуль, а затем конкретный банк.
Чипу передаётся местоположение страницы данных (адрес строки), и он отвечает на это передачей целой страницы. На всё это требуется время и, что более важно, время нужно и для полной активации строки, чтобы гарантировать полную блокировку строки битов перед выполнением доступа к ней.
Затем определяется соответствующий столбец и извлекается единственный бит информации. Все типы DRAM передают данные пакетами, упаковывая информацию в единый блок, и пакет в современной памяти почти всегда равен 8 битам. То есть даже если за один тактовый цикл извлекается один бит, эти данные нельзя передать, пока из других банков не будет получено ещё 7 битов.
А если следующий требуемый бит данных находится на другой странице, то перед активацией следующей необходимо закрыть текущую открытую страницу (это процесс называется pre-charging). Всё это, разумеется, требует больше времени.
Все эти различные периоды между временем отправки команды и выполнением требуемого действия называются таймингами памяти или задержками. Чем ниже значение, тем выше общая производительность, ведь мы тратим меньше времени на ожидание завершения операций.
Некоторые из этих задержек имеют знакомые фанатам компьютеров названия:
Название тайминга | Описание | Обычное значение в DDR4 |
tRCD | Row-to-Column Delay: количество циклов между активацией строки и возможностью выбора столбца | 17 циклов |
CL | CAS Latency: количество циклов между адресацией столбца и началом передачи пакет данных | 15 циклов |
tRAS | Row Cycle Time: наименьшее количество циклов, в течение которого строка должна оставаться активной перед тем, как можно будет выполнить её pre-charging | 35 циклов |
tRP | Row Precharge time: минимальное количество циклов, необходимое между активациями разных строк | 17 циклов |
Существует ещё много других таймингов и все их нужно тщательно настраивать, чтобы DRAM работала стабильно и не искажала данные, имея при этом оптимальную производительность. Как можно увидеть из таблицы, схема, демонстрирующая циклы в действии, должна быть намного шире!
Хотя при выполнении процессов часто приходится ждать, команды можно помещать в очереди и передавать, даже если память занята чем-то другим. Именно поэтому можно увидеть много модулей RAM там, где нам нужна производительность (системная память CPU и чипы на графических картах), и гораздо меньше модулей там, где они не так важны (в жёстких дисках).
Тайминги памяти можно настраивать — они не заданы жёстко в самой DRAM, потому что все команды поступают из контроллера памяти в процессоре, который использует эту память. Производители тестируют каждый изготавливаемый чип и те из них, которые соответствуют определённым скоростям при заданном наборе таймингов, группируются вместе и устанавливаются в DIMM. Затем тайминги сохраняются в небольшой чип, располагаемый на плате.
Даже памяти нужна память. Красным указано ПЗУ (read-only memory, ROM), в котором содержится информация SPD.
Процесс доступа к этой информации и её использования называется serial presence detect (SPD). Это отраслевой стандарт, позволяющий BIOS материнской платы узнать, на какие тайминги должны быть настроены все процессы.
Многие материнские платы позволяют пользователям изменять эти тайминги самостоятельно или для улучшения производительности, или для повышения стабильности платформы, но многие модули DRAM также поддерживают стандарт Extreme Memory Profile (XMP) компании Intel. Это просто дополнительная информация, хранящаяся в памяти SPD, которая сообщает BIOS: «Я могу работать с вот с такими нестандартными таймингами». Поэтому вместо самостоятельной возни с параметрами пользователь может настроить их одним нажатием мыши.
Спасибо за службу, RAM!
В отличие от других уроков анатомии, этот оказался не таким уж грязным — DIMM сложно разобрать и для изучения модулей нужны специализированные инструменты. Но внутри них таятся потрясающие подробности.
Возьмите в руку планку памяти DDR4-SDRAM на 8 ГБ из любого нового ПК: в ней упаковано почти 70 миллиардов конденсаторов и такое же количество транзисторов. Каждый из них хранит крошечную долю электрического заряда, а доступ к ним можно получить за считанные наносекунды.
Даже при повседневном использовании она может выполнять бесчисленное количество команд, и большинство из плат способны без малейших проблем работать многие годы. И всё это меньше чем за 30 долларов? Это просто завораживает.
DRAM продолжает совершенствоваться — уже скоро появится DDR5, каждый модуль которой обещает достичь уровня полосы пропускания, с трудом достижимый для двух полных DIMM типа DDR4. Сразу после появления она будет очень дорогой, но для серверов и профессиональных рабочих станций такой скачок скорости окажется очень полезным.