что такое бесшовный wifi роуминг
Бесшовный роуминг Wi-Fi
Начальник позвал в переговорку, сказал захватить с собой ноутбук. Вроде бы ничего — и там, и на рабочем месте у нас офисная беспроводная сеть. Приходим — а загрузка поставленного на скачивание большого файла оборвалась, SSH-сессии закрылись, заботливо набранная веб-форма при отправке почему-то сбросилась. Знакомо?
Сегодня мы поговорим о бесшовном роуминге устройств в беспроводных сетях Wi-Fi.
Роумингом называется процесс переподключения устройства к беспроводной сети при перемещении его в пространстве. Принимаемая мощность радиосигнала ослабевает с расстоянием до передатчика, в результате чего падает эффективная скорость передачи информации, растут канальные ошибки вплоть до обрыва беспроводного соединения. При наличии в радио-сети с одним именем (SSID) более чем одной точки доступа перемещение мобильного абонента из зоны уверенной работы в пределах первой точки доступа в зону, где сигнал от второй точки доступа качественнее (выше мощность, больше отношение сигнал/шум) может произойти такое переподключение.
Решение об осуществлении переподключения всегда принимает клиентское устройство (драйвер Wi-Fi адаптера). Точка доступа может только «подсказать» устройству о желательности данного действия. Иногда можно указать в настройках драйвера параметр «агрессивности» принятия решения. Однако при первоначальном подключении абонента централизованно управляемая система может «заставить» абонента подключиться к предпочтительной (с точки зрения загрузки) точке, и на желаемом канале/диапазоне.
Бесшовным называют такой механизм роуминга, при котором потери передаваемых данных, возникающие в момент переключения с точки на точку, минимальны либо равны нулю, а стек TCP/IP клиентской операционной системы даже не замечает факт переключения. Такой механизм важен при эксплуатации чувствительных к задержкам и потерям приложений, таких как передача голоса по радио-сети (Voice over Wireless), потокового видео, больших объемов данных и вообще всех случаев, где протокол TCP не в состоянии «переварить» временное пропадание канала передачи данных.
Мы поставим эксперименты и подсмотрим за процессом бесшовного роуминга, реализованного средствами централизованно управляемой беспроводной сети, построенной на оборудовании Juniper Wireless, о котором шла речь во вводной статье. Это система корпоративного класса, специально спроектированная для решения задач обеспечения бесшовного роуминга. Затем мы «сломаем» бесшовность и продемонстрируем, к чему это приводит и какого поведения можно ожидать от устройств «бытового класса».
Расположим ноутбук так, чтобы принимаемый им сигнал от обеих точек доступа (на 6 и 11 каналах диапазона b/g, 2.4 ГГц) был примерно одинаковым, подключимся к сети, запустим пинг, посмотрим на распределение энергии в эфире:
Для проверки работоспособности роуминга необходимо, чтобы ноутбук стал получать от точки доступа, с которой он в настоящий ассоциирован, сигнал существенно худший, чем от другой точки с тем же SSID и настройками шифрования. Можно переносить ноутбук, но мне было так не удобно, поэтому я носил одну из точек доступа (на длинном Ethernet кабеле) поближе либо за бетонный угол, а сигнал второй ослаблял, накрывая её тремя вложенными стальными кастрюлями, как матрешку. Каждая кастрюля давала ослабление в 3-4 dB. В результате в какой-то момент времени клиент «соскакивал» на другую точку доступа:
При этом анализ пакетов в эфире показывает такую картину (для того, чтобы OmniPeek мог видеть весь трафик, мне пришлось повторить все эксперименты с точками, жестко завязанными на 11й канал, иначе при сканировании по <6,11>я бы потерял самое интересное).
Ноутбук пытается найти более предпочтительную точку доступа (probe request, фрейм 79086), и получает ответы от обоих, с уровнем сигнала 23% (текущая) и 63% (кандидат).
Последний полезный кадр 79103 передан до сервера через ap2, после чего кадрами 79122-79136 произведено быстрое переключение на ap1, включая авторизацию, реассоциацию, обмен EAPOL.
В запросе на реассоциацию в кадре 79126 содержится ключ PMKID (Pairwise Master Key), который определяет, грубо говоря, идентификатор данной беспроводной сессии. Если точки доступа работают коллективно (под управлением одного контроллера, либо контроллеры общаются между собой), «новая» точка доступа проверяет полученный идентификатор по своим таблицам и, если таковой найден, пропускает этап авторизации и тут же разрешает обмен данными.
В нашем случае первый полезный кадр 79138 через новую точку доступа, ap1, пошел через 90 миллисекунд после последнего через старую. RADIUS-сервер получил только промежуточное сообщение аккаунтинга от точки, которую оставили в покое:
Всё это работало так быстро только потому, что обе точки доступа (вернее, обслуживающие их контроллеры) имеют общую базу подключенных активных клиентских устройств. Для этого контроллеры объединены в «группу мобильности». Выбирается имя, задается начальный «кандидат на роль главного»:
WLA-1:
WLA-2:
Пример функционирующей группы мобильности:
При роуминге абонентов между точками доступа контроллеры обмениваются контекстом абонента, включая историю его перемещений:
WLC-1# sh sessions network verbose
Name: test
Session ID: 42
Global ID: SESS-41-d44e4b-442936-c9f222
Login type: dot1x
SSID: DOT1X
IP: 172.16.130.128
MAC: 00:21:5d:c8:06:8a
AP/Radio: 5/1 (Port 5)
State: ACTIVE
Session tag: 1
Host name: Cartman
Vlan name: default (AAA)
Device type: windows7 (AAA)
Device group: windows (AAA)
Up time: 00:09:59
Roaming history:
Switch AP/Radio Association time Duration
— — — — *172.16.130.30 5/1 06/28/13 22:12:22 00:06:34
172.16.130.31 2/1 06/28/13 21:57:28 00:14:54
172.16.130.30 5/1 06/28/13 22:08:56
Session Start: Fri Jun 28 22:08:57 2013 MSK
Last Auth Time: Fri Jun 28 22:08:57 2013 MSK
Last Activity: Fri Jun 28 22:18:56 2013 MSK ( Полный цикл авторизации на RADIUS-сервере
В результате эффективный перерыв в передаче данных составил 332 миллисекунды. Причем в нашем эксперименте RADIUS-сервер пользовался локальной базой данных, т.е. не обращался к медленному SQL серверу, не спрашивал разрешения в Active Directory и не занимался пересылкой, верификацией и сравнением Х.509 сертификатов.
В данной статье мы не рассмотрели различные имеющиеся стандартные либо вендор-зависимые механизмы «помощи» клиентского роуминга, такие как WPA2 Fast BSS Transition (FT) 802.11r, Neighbor Reports и т.п. Желающие могут изучить эту серию статей.
Бесшовный Wi-Fi-роуминг: теория на практике
Разбираемся с технологиями роуминга (Handover, Band steering, IEEE 802.11k, r, v) и проводим пару наглядных экспериментов, демонстрирующих их работу на практике.
Введение
Беспроводные сети группы стандартов IEEE 802.11 сегодня развиваются чрезвычайно быстро, появляются новые технологии, новые подходы и реализации. Однако с ростом количества стандартов в них все сложнее становится разобраться. Сегодня мы попытаемся описать несколько наиболее часто встречающихся технологий, которые относят к роумингу (процедуре повторного подключения к беспроводной сети), а также посмотреть, как работает бесшовный роуминг на практике.
Handover или «миграция клиента»
Подключившись к беспроводной сети, клиентское устройство (будь то смартфон с Wi-Fi, планшет, ноутбук или ПК, оснащенный беспроводной картой) будет поддерживать беспроводное подключение в случае, если параметры сигнала остаются на приемлемом уровне. Однако при перемещении клиентского устройства сигнал от точки доступа, с которой изначально была установлена связь, может ослабевать, что рано или поздно приведет к полной невозможности осуществлять передачу данных. Потеряв связь с точкой доступа, клиентское оборудование произведет выбор новой точки доступа (конечно же, если она находится в пределах доступности) и осуществит подключение к ней. Такой процесс и называется handover. Формально handover — процедура миграции между точками доступа, инициируемая и выполняемая самим клиентом (hand over — «передавать, отдавать, уступать»). В данном случае SSID старой и новой точек даже не обязаны совпадать. Более того, клиент может попадать в совершенно иную IP-подсеть.
Как в старой, так и в новой сети у клиента будет присутствовать доступ в интернет, однако все установленные подключения будут сброшены. Но проблема ли это? Обычно переключение не вызывает затруднений, так как все современные браузеры, мессенджеры и почтовые клиенты без проблем обрабатывают потерю соединения. Примером такого переключения может служить переход из кинозала в кафе внутри одного крупного торгового центра: только что вы обменялись с друзьями впечатлениями от нашумевшего блокбастера, а теперь готовы поделиться с ними фотографией кулинарного шедевра — нового десерта от шеф-повара.
Увы, в реальности все не так гладко. Все большую популярность набирают голосовые и видеовызовы, передаваемые по беспроводным сетям Wi-Fi, — независимо от того, используете ли вы Skype, Viber, Telegram, WhatsApp или какое-либо иное приложение, возможность перемещаться и при этом продолжать разговор без перерыва бесценна. И здесь возникает проблема минимизации времени переключения. Голосовые приложения в процессе работы отправляют данные каждые 10–30 мс в зависимости от используемого кодека. Потеря одного или пары таких пакетов с голосом не вызовет раздражения у абонентов, однако, если трафик прервется на более продолжительное время, это не останется незамеченным. Обычно считается, что прерывание голоса на время до 50 мс остается незамеченным большинством собеседников, тогда как отсутствие голосового потока в течение 150 мс однозначно вызывает дискомфорт.
Для минимизации времени, затрачиваемого на повторное подключение абонента к медиасервисам, необходимо вносить изменения как в опорную проводную инфраструктуру (позаботиться, чтобы у клиента не менялись внешний и внутренний IP-адреса), так и в процедуру handover, описанную ниже.
Handover между точками доступа:
В беспроводных сетях стандартов IEEE 802.11 все решения о переключении принимаются клиентской стороной.
Источник: frankandernest.com
Band steering
Технология band steering позволяет беспроводной сетевой инфраструктуре пересаживать клиента с одного частотного диапазона на другой, обычно речь идет о принудительном переключении клиента с диапазона 2,4 ГГц в диапазон 5 ГГц. Хотя band steering и не относится непосредственно к роумингу, мы все равно решили упомянуть его здесь, так как он связан с переключением клиентского устройства и поддерживается всеми нашими двухдиапазонными точками доступа.
В каком случае может возникнуть необходимость переключить клиента в другой частотный диапазон? Например, такая необходимость может быть связана с переводом клиента из перегруженного диапазона 2,4 ГГц в более свободный и высокоскоростной 5 ГГц. Но бывают и другие причины.
Стоит отметить, что на данный момент не существует стандарта, жестко регламентирующего работу описываемой технологии, поэтому каждый производитель реализовывает ее по-своему. Однако общая идея остается примерно схожей: точки доступа не анонсируют клиенту, выполняющему активный скан, SSID в диапазоне 2,4 ГГц, если в течение некоторого времени была замечена активность данного клиента на частоте 5 ГГц. То есть точки доступа, по сути, могут просто умолчать о наличии поддержки диапазона 2,4 ГГц, в случае если удалось установить наличие поддержки клиентом частоты 5 ГГц.
Выделяют несколько режимов работы band steering:
Конечно же, клиенты с поддержкой только какого-либо одного частотного диапазона смогут подключиться к нему без проблем.
На схеме ниже мы попытались графически изобразить суть технологии band steering.
Технологии и стандарты
Вернемся теперь к самому процессу переключения между точками доступа. В стандартной ситуации клиент будет максимально долго (насколько это возможно) поддерживать существующую ассоциацию с точкой доступа. Ровно до тех пор, пока уровень сигнала позволяет это делать. Как только возникнет ситуация, что клиент более не может поддерживать старую ассоциацию, запустится процедура переключения, описанная ранее. Однако handover не происходит мгновенно, для его завершения обычно требуется более 100 мс, а это уже заметная величина. Существует несколько стандартов управления радиоресурсами рабочей группы IEEE 802.11, направленных на улучшение времени повторного подключения к беспроводной сети: k, r и v. В нашей линейке Auranet поддержка 802.11k реализована на точке доступа CAP1200, а в линейке Omada на точках доступа EAP225 и EAP225-Outdoor реализованы протоколы 802.11k и 802.11v.
802.11k
Данный стандарт позволяет беспроводной сети сообщать клиентским устройствам список соседних точек доступа и номеров каналов, на которых они работают. Сформированный список соседних точек позволяет ускорить поиск кандидатов для переключения. Если сигнал текущей точки доступа ослабевает (например, клиент удаляется), устройство будет искать соседние точки доступа из этого списка.
802.11r
Версия r стандарта определяет функцию FT — Fast Transition (Fast Basic Service Set Transition — быстрая передача набора базовых служб), позволяющую ускорить процедуру аутентификации клиента. FT может использоваться при переключении беспроводного клиента с одной точки доступа на другую в рамках одной сети. Могут поддерживаться оба метода аутентификации: PSK (Preshared Key — общий ключ) и IEEE 802.1Х. Ускорение осуществляется за счет сохранения ключей шифрования на всех точках доступа, то есть клиенту не требуется при роуминге проходить полную процедуру аутентификации с привлечением удаленного сервера.
802.11v
Данный стандарт (Wireless Network Management) позволяет беспроводным клиентам обмениваться служебными данными для улучшения общей производительности беспроводной сети. Одной из наиболее используемых опций является BTM (BSS Transition Management).
Обычно беспроводной клиент измеряет параметры своего подключения к точке доступа для принятия решения о роуминге. Это означает, что клиент не имеет информации о том, что происходит с самой точкой доступа: количество подключенных клиентов, загрузка устройства, запланированные перезагрузки и т. д. С помощью BTM точка доступа может направить запрос клиенту на переключение к другой точке с лучшими условиями работы, пусть даже с несколько худшим сигналом. Таким образом, стандарт 802.11v не направлен непосредственно на ускорение процесса переключения клиентского беспроводного устройства, однако в сочетании с 802.11k и 802.11r обеспечивает более быструю работу программ и повышает удобство работы с беспроводными сетями Wi-Fi.
IEEE 802.11k в деталях
Стандарт расширяет возможности RRM (Radio Resource Management) и позволяет беспроводным клиентам с поддержкой 11k запрашивать у сети список соседних точек доступа, потенциально являющихся кандидатами для переключения. Точка доступа информирует клиентов о поддержке 802.11k с помощью специального флага в Beacon. Запрос отправляется в виде управляющего (management) фрейма, который называют action frame. Точка доступа отвечает также с помощью action frame, содержащего список соседних точек и номера их беспроводных каналов. Сам список не хранится на контроллере, а генерируется автоматически по запросу. Также стоит отметить, что данный список зависит от местоположения клиента и содержит не все возможные точки доступа беспроводной сети, а лишь соседние. То есть два беспроводных клиента, территориально находящиеся в разных местах, получат различные списки соседних устройств.
Обладая таким списком, клиентскому устройству нет необходимости выполнять скан (активный или пассивный) всех беспроводных каналов в диапазонах 2,4 и 5 ГГц, что позволяет сократить использование беспроводных каналов, то есть высвободить дополнительную полосу пропускания. Таким образом, 802.11k позволяет сократить время, затрачиваемое клиентом на переключение, а также улучшить сам процесс выбора точки доступа для подключения. Кроме этого, отсутствие необходимости в дополнительных сканированиях позволяет продлить срок жизни аккумулятора беспроводного клиента. Стоит отметить, что точки доступа, работающие в двух диапазонах, могут сообщать клиенту информацию о точках из соседнего частотного диапазона.
Мы решили наглядно продемонстрировать работу IEEE 802.11k в нашем беспроводном оборудовании, для чего использовали контроллер AC50 и точки доступа CAP1200. В качестве источника трафика использовался один из популярных мессенджеров с поддержкой голосовых звонков, работающий на смартфоне Apple iPhone 8+, заведомо поддерживающий 802.11k. Профиль голосового трафика представлен ниже.
Как видно из диаграммы, использованный кодек генерирует один голосовой пакет каждые 10 мс. Заметные всплески и провалы на графике объясняются небольшой вариацией задержки (jitter), всегда присутствующей в беспроводных сетях на базе Wi-Fi. Мы настроили зеркалирование трафика на коммутаторе, к которому подключены обе точки доступа, участвующие в эксперименте. Кадры от одной точки доступа попадали в одну сетевую карту системы сбора трафика, фреймы от второй — во вторую. В полученных дампах отбирался только голосовой трафик. Задержкой переключения можно считать интервал времени, прошедший с момента пропадания трафика через один сетевой интерфейс, и до его появления на втором интерфейсе. Конечно же, точность измерения не может превышать 10 мс, что обусловлено структурой самого трафика.
Итак, без включения поддержки стандарта 802.11k переключение беспроводного клиента происходило в среднем в течение 120 мс, тогда как активация 802.11k позволяла сократить эту задержку до 100 мс. Конечно же, мы понимаем, что, хотя задержку переключения удалось сократить на 20 %, она все равно остается высокой. Дальнейшее уменьшение задержки станет возможным при совместном использовании стандартов 11k, 11r и 11v, как это уже реализовано в домашней серии беспроводного оборудования DECO.
Однако у 802.11k есть еще один козырь в рукаве: выбор момента для переключения. Данная возможность не столь очевидна, поэтому мы бы хотели упомянуть о ней отдельно, продемонстрировав ее работу в реальных условиях. Обычно беспроводной клиент ждет до последнего, сохраняя существующую ассоциацию с точкой доступа. И только когда характеристики беспроводного канала становятся совсем плохими, запускается процедура переключения на новую точку доступа. С помощью 802.11k можно помочь клиенту с переключением, то есть предложить произвести его раньше, не дожидаясь значительной деградации сигнала (конечно же, речь идет о мобильном клиенте). Именно моменту переключения посвящен наш следующий эксперимент.
Качественный эксперимент
Переместимся из стерильной лаборатории на реальный объект заказчика. В помещении были установлены две точки доступа с мощностью излучения 10 дБм (10 мВт), беспроводной контроллер и необходимая поддерживающая проводная инфраструктура. Схема помещений и места установки точек доступа представлены ниже.
Беспроводной клиент перемещался по помещению, совершая видеозвонок. Сначала мы отключили поддержку стандарта 802.11k в контроллере и установили места, в которых происходило переключение. Как видно из представленной ниже картинки, это случалось на значительном удалении от «старой» точки доступа, вблизи «новой»; в этих местах сигнал становился очень слабым, а скорости едва хватало для передачи видеоконтента. Наблюдались заметные лаги в голосе и видео при переключении.
Затем мы включили поддержку 802.11k и повторили эксперимент. Теперь переключение происходило раньше, в местах, где сигнал от «старой» точки доступа все еще оставался достаточно сильным. Лагов в голосе и видео зафиксировано не было. Место переключения теперь переместилось примерно на середину между точками доступа.
В этом эксперименте мы не ставили перед собой цели выяснить какие бы то ни было численные характеристики переключения, а лишь качественно продемонстрировать суть наблюдаемых различий.
Заключение
Все описанные стандарты и технологии призваны улучшить опыт использования клиентом беспроводных сетей, сделать его работу более комфортной, уменьшить влияние раздражающих факторов, повысить общую производительность беспроводной инфраструктуры. Надеемся, что мы смогли наглядно продемонстрировать преимущества, которые получат пользователи после внедрения данных опций в беспроводных сетях.
Можно ли в 2018 году прожить в офисе без роуминга? На наш взгляд, такое вполне возможно. Но, попробовав раз перемещаться между кабинетами и этажами без потери соединения, без необходимости повторно устанавливать голосовой или видеовызов, не будучи вынужденным многократно повторять сказанное или переспрашивать, — от этого будет уже нереально отказаться.
Как я создавал бесшовный Wi-Fi
У нас в конторе не так давно назрела задача сделать бесшовное Wi-Fi-покрытие, долго терпели и перетаптывались, но в итоге его сделали. Поделюсь опытом, как это было. Началось с того, что два года назад мы полностью перешли на IP-АТС и почти извели аналоговые телефоны включая, в итоге и DECT. Однако, переносные трубки нужны и помимо настольных SIP-телефонов купили несколько Wi-Fi телефонов Tecom. Я и сам, как ответственный за техническую часть в компании постоянно хожу по офису с различными Wi-Fi-ными девайсами, ну и манагеры тоже. У многих на руках упомянутые Wi-Fi SIP-телефоны, + у складских пару Wi-Fi терминалов, есть просто Андроиды и Яблоки с установленными SIP-клиентами от АТС. Раньше все решалось несколькими Wi-Fi роутерами, в принципе, тоже было приемлемо (офис небольшой), но ровно пока ты сидишь на месте – пошел, все, кончился разговор, а Skype-соединение еще быстрее слетает. Это стало изрядно раздражать руководство и менеджеров и пошли наезды что вай-фай не вай-фай. Попытки просто увеличить количество роутеров ясное дело задачу не решило.
Стал читать и таки вычитал, что все уже давно придумано до нас. Есть Wi-Fi точки, которые могут делать переход клиента между собой без разрыва или почти без разрыва соединения. Причем оборудования такого достаточно много на рынке, осталось только выбрать по бюджету и адекватности. Оказалось, на эту тему очень много публикаций в зарубежном интернете, у нас поменьше. Огромным минусом этих систем, что все они хотят контроллера, который стоит как чугунный мост и у некоторых особо жадных еще и лицензии требуются на подключение каждой точки. Я принес смету на наш офис на одном таком уважаемом оборудовании, у генерального глаза округлились и ответ был виден на его лице еще до того, как он дочитал эту калькуляцию.
В общем, по мере изучения задачи проснулся уже спортивный интерес – можно ли сделать гладкое WiFi-покрытие (прям как на форумах) в нормальные деньги и так чтобы без этих контроллеров? Оказалось, можно.
Правда выбор варианта занял время, но после загугливания выяснилось, что нужны точки доступа, поддерживающие протоколы 802.11r и 802.11k. Эти протоколы отвечают за быстрое, практически мгновенное переключение абонентов от одной точки к другой. Маркет выдает множество вариантов с поддержкой этих протоколов, но либо мимо цены, либо опять на контроллере. В итоге наткнулся на нужный вариант совершенно случайно. Был летом в гостинице Ибис в Казани на выходных с женой и во всех коридорах на потолке стояли «блины» с надписью EDIMAX. Когда долго и пристально ищешь начинаешь уже обращать внимание на то как сделано «у взрослых». Загуглил что это, нашел, – это оказалось не великая проблема. И о чудо! Этот Эдимакс оказалось может работать и без контроллера. Все что нужно – это назначить одну из точек контроллером.
На сайте производителя была вот такая умная картинка, где они хвалятся как у них все «перетекает» от одной точки к другой.
За нее, честно говоря и зацепился. Тоже два этажа нарисованы как у нас, лестница, прям выстрел в голову.
Поглядели поближе спецификации – вроде подходит, цена не шокирующая.
Сначала купили две: 1 потолочную и одну настенную (честно смущало что раньше я с этой маркой не сталкивался, но благо ОЗПП нам дает 14 дней на возврат).
И, как ни странно, оно заработало.
Сначала немного теории. Кратко об упомянутых протоколах 802.11r/k (выдержки из инета):
802.11k – уменьшает время поиска точек доступа с наилучшими параметрами сигнала. По этому протоколу клиенту передается информация о соседних точках доступа и состоянии их каналов.
То есть, как я понимаю, даже не начав перемещение, абонентское устройство уже заранее знает, в каком месте роуминг возможен, и какая точка доступа его обслужит лучше. А это собственно, то чего нам и надо.
802.11r – использует технологию Fast Basic Service Set Transition, которая позволяет хранить ключи шифрования всех от точек доступа сети. В результате клиент освобожден от процесса полной аутентификации с сервером – достаточно всего 4-х коротких сообщений для перехода на новую точку доступа. Это свойство позволяет затрачивать на переход не более 50 миллисекунд.
Вообще, протоколы эти оказались весьма распространённые, но далеко не все абонентские/клиентские устройства и даже точки доступа на рынке эти протоколы поддерживают. Хотя, вот, например, яблочные девайсы (как бы кто к ним не относился) оказалось поддерживают эти стандарты чуть ли не с 2011 года. Поэтому построение связи, так скажем, на базе бытовых точек доступа сведет попытку организации бесшовного роуминга на нет – без поддержки 802.11k/r переключение может занять до 3 секунд. О бесшовности при таких лагах в переключении речи не идет! На что я и натыкался в своих экспериментах с роутерами.
Теперь перехожу к непосредственному построению WiFi-сети. Как я говорил, мы изначально взяли 2 точки этого Эдимакса и после удачного теста немного расширили парк в рамках бюджета. Я специально взял несколько разных точек доступа (естественно этого же производителя), работающих как в стандарте 802.11ac, так и только в 802.11n, для работы сети в целом это не принципиально. Принципиально, чтобы они поддерживали протоколы 802.11k/r. Почему взял разные? – у них разная диаграмма направленности и некоторые из них подешевле. Например, в там, где абонентов мало я поставил относительно простые точки доступа, а в переговорной, у руководства, а также других местах с где народу побольше монтировал топовые модели. Ну и опять же Wi-Fi AC, модно, быстро и свободный диапазон 5 ГГц. А складским им все равно и N300 пойдет.
Что касается конкретики, то я выбрал из EDIMAX PRO модели: CAP300, CAP1750, WAP1200 и WAP1750. Причем WAP1750 в данном случае выступает в роли контроллера. Вообще у Эдимакса этого достаточно много сетевого оборудования именного бытового типа, но с ним путать не надо, я сейчас говорю об их бизнес-серии и это действительно не плохое оборудование по моим ощущениям.
Расставил точки доступа в офисе.
Получил вещание согласно плана, который вы его видите на скриншоте Эдимаксовской системы управления точками. Она есть в каждой точке и в принципе любая могла быть контроллером. В этой системе предусмотрена функция e-map. То есть можно втащить в web-интерфейс схему здания или там территории и на ней указать масштаб и места где стоят точки. В итоге, система покажет примерные зоны покрытия. В общем не прорыв, но удобно.
В моем офисе два этажа и для проведения теста я разместил одну точку доступа в переговорной на первом этаже (на плане справа), а три другие точки доступа были расположены на втором вдоль коридора. Подчеркну, уровень сигнала везде должен быть достаточно хорошим – всё же я делаю бесшовный роуминг и тут недопустимо ходить с ноутбуком и выискивать место наилучшего приема. На скриншоте изображена стадия примерно половины работ, смонтировано всего 4 точки, сейчас их уже 7. Все точки РоЕ-шные, поэтому пришлось завести в хозяйстве еще один РоЕ свич. Имеющиеся порты уже были заняты под телефоны. В итоге, покрыт каждый угол и те же Текомовские телефоны работают в сети лучше ДЕКТов.
Вот кстати, фото реальных точек доступа, участвовавших в решении задачи:
Вот это у Эдимаксов самая модная точка. Встроенная MIMO 3×3 антенна, 2 диапазона и все пироги. На картинке она не большая, но в реале она чуть больше собратьев САР300/САР1200 – размером с небольшую блинную сковородку с низкими бортами.
У потолочных точек диаграмма направленности примерно 190 градусов у настенных 360 и антенны внешние, поэтому более мощные и освещают сферически. Но правды ради, хотелось бы чтобы антенны были бы чуть мощнее. Я ставил WAPы в «одиноких» зонах и сложных местах с толстыми перекрытиями. В принципе, кирпичную стену и потолок пробивает, но были бы рога помощнее было бы еще лучше. Возможно в дальнейшем заменю на другие антенны стороннего производства благо разъем у WAP-точек стандартный RP-SMA. Попутно всплыла проблема, что на рынке почти нет комбинированных антенн 2,4+5 ГГц. Почему не понятно. Плюсом WAPов является наличие 2-х РоЕ портов, РоЕ at на вход (точка сама питается) и РоЕ af на выход, можно подключить к ней что-то еще. В условиях моего дефицита РоЕ портов может в дальнейшем очень сгодиться.
Итак, после монтажа точек переходим собственно к настройке роуминга. Обращаемся к планируемой быть контроллером точке WAP1750 и говорим ей что она теперь вожак в стае. Проверяем связь с остальными точками, открываем панель управления Edimax Pro NMS (Network Management Suite) и видим, что все точки доступа находятся в сети.
Все живет, тупая проверка доступа в интернет в разных местах офиса говорит, что вроде все ОК. Связь не рвется, но надо как-то убедиться, что оно так на чем-то более существенном.
Ну и переходим к самому главному – тестируем сеть в нагрузке (Наступает момент истины. Сейчас проверим кто чего врет на самом деле). Для этого проводим натурные испытания – нагружаем WiFi потоковым видео, скачанным из YouTube и транслируем его в сеть. Можно было бы подключиться напрямую к YouTube, но тогда мы зависели бы от внешнего интернет-канала, где теоретически возможные сбои, которые влияли бы на чистоту эксперимента.
Теперь самое главное – беру планшет, подхватываю видео, транслирую его по Wi-Fi-сети и хожу по офису. Перемещаюсь из одной комнаты в другую, иду по коридору, спускаюсь по лестнице на этаж ниже, прохожу там, поднимаюсь наверх и прихожу в исходную точку. Весь процесс занял несколько минут, зарегистрирован внешней экшн-камерой и находится по ссылке.
По следующей ссылке можно увидеть это же видео, но с показом процесса подготовки трансляции.