что такое атрибут в питоне
Атрибуты и протокол дескриптора в Python
Рассмотрим такой код:
Сегодня мы разберём ответ на вопрос: «Что именно происходит, когда мы пишем foo.bar?»
Вы, возможно, уже знаете, что у большинства объектов есть внутренний словарь __dict__, содержащий все их аттрибуты. И что особенно радует, как легко можно изучать такие низкоуровневые детали в Питоне:
Давайте начнём с попытки сформулировать такую (неполную) гипотезу:
Пока звучит похоже на правду:
Теперь предположим, что вы уже в курсе, что в классах можно объявлять динамические аттрибуты:
Хм… ну ладно. Видно что __getattr__ может эмулировать доступ к «ненастоящим» атрибутам, но не будет работать, если уже есть объявленная переменная (такая, как foo.bar, возвращающая ‘hello!’, а не ‘goodbye!’). Похоже, всё немного сложнее, чем казалось вначале.
И действительно: существует магический метод, который вызывается всякий раз, когда мы пытаемся получить атрибут, но, как продемонстрировал пример выше, это не __getattr__. Вызываемый метод называется __getattribute__, и мы попробуем понять, как в точности он работает, наблюдая различные ситуации.
Пока что модифицируем нашу гипотезу так:
foo.bar эквивалентно foo.__getattribute__(‘bar’), что примерно работает так:
Проверим практикой, реализовав этот метод (под другим именем) и вызывая его напрямую:
Выглядит корректно, верно?
Отлично, осталось лишь проверить, что поддерживается присвоение переменных, после чего можно расходиться по дом… —
my_getattribute возвращает некий объект. Мы можем изменить его, если он мутабелен, но мы не можем заменить его на другой с помощью оператора присвоения. Что же делать? Ведь если foo.baz это эквивалент вызова функции, как мы можем присвоить новое значение атрибуту в принципе?
Когда мы смотрим на выражение типа foo.bar = 1, происходит что-то больше, чем просто вызов функции для получения значения foo.bar. Похоже, что присвоение значения атрибуту фундаментально отличается от получения значения атрибута. И правда: мы может реализовать __setattr__, чтобы убедиться в этом:
Пара вещей на заметку относительно этого кода:
А ведь у нас есть ещё и property (и его друзья). Декоратор, который позволяет методам выступать в роли атрибутов.
Давайте постараемся понять, как это происходит.
Просто ради интереса, а что у нас в f.__dict__?
В __dict__ нет ключа bar, но __getattr__ почему-то не вызывается. WAT?
bar — метод, да ещё и принимающий в качестве параметра self, вот только это метод находится в классе, а не в экземпляре класса. И в этом легко убедиться:
Ключ bar действительно находится в словаре атрибутов класса. Чтобы понять работу __getattribute__, нам нужно ответить на вопрос: чей __getattribute__ вызывается раньше — класса или экземпляра?
Видно, что первым делом проверка идёт в __dict__ класса, т.е. у него приоритет перед экземпляром.
Погодите-ка, а когда мы вызывали метод bar? Я имею в виду, что наш псевдокод для __getattribute__ никогда не вызывает объект. Что же происходит?
Вся суть тут. Реализуйте любой из этих трёх методов, чтобы объект стал дескриптором и мог менять дефолтное поведение, когда с ним работают как с атрибутом.
Если объект объявляет и __get__(), и __set__(), то его называют дескриптором данных («data descriptors»). Дескрипторы реализующие лишь __get__() называются дескрипторами без данных («non-data descriptors»).
Оба вида дескрипторов отличаются тем, как происходит перезапись элементов словаря атрибутов объекта. Если словарь содержит ключ с тем же именем, что и у дескриптора данных, то дескриптор данных имеет приоритет (т.е. вызывается __set__()). Если словарь содержит ключ с тем же именем, что у дескриптора без данных, то приоритет имеет словарь (т.е. перезаписывается элемент словаря).
Чтобы создать дескриптор данных доступный только для чтения, объявите и __get__(), и __set__(), где __set__() кидает AttributeError при вызове. Реализации такого __set__() достаточно для создания дескриптора данных.
Короче говоря, если вы объявили любой из этих методов — __get__, __set__ или __delete__, вы реализовали поддержку протокола дескриптора. А это именно то, чем занимается декоратор property: он объявляет доступный только для чтения дескриптор, который будет вызываться в __getattribute__.
Последнее изменение нашей реализации:
foo.bar эквивалентно foo.__getattribute__(‘bar’), что примерно работает так:
Попробуем продемонстрировать на практике:
Мы лишь немного поскребли поверхность реализации атрибутов в Python. Хотя наша последняя попытка эмулировать foo.bar в целом корректна, учтите, что всегда могут найтись небольшие детали, реализованные по-другому.
Надеюсь, что помимо знаний о том, как работают атрибуты, мне так же удалось передать красоту языка, который поощряет вас к экспериментам. Погасите часть долга знаний сегодня.
Класс и объект в Python
Объектно-ориентированное программирование в Python
Python — это процедурно-ориентированный и одновременно объектно-ориентированный язык программирования.
Процедурно-ориентированный
«Процедурно-ориентированный» подразумевает наличие функций. Программист может создавать функции, которые затем используются в сторонних скриптах.
Объектно-ориентированный
«Объектно-ориентированный» подразумевает наличие классов. Есть возможность создавать классы, представляющие собой прототипы для будущих объектов.
Создание класса в Python
Синтаксис для написания нового класса:
Атрибут:
Атрибут — это элемент класса. Например, у прямоугольника таких 2: ширина ( width ) и высота ( height ).
Метод:
Конструктор:
Создание объекта с помощью класса Rectangle:
Что происходит при создании объекта с помощью класса?
При создании объекта класса Rectangle запускается конструктор выбранного класса, и атрибутам нового объекта передаются значения аргументов. Как на этом изображении:
Конструктор с аргументами по умолчанию
В других языках программирования конструкторов может быть несколько. В Python — только один. Но этот язык разрешает задавать значение по умолчанию.
Все требуемые аргументы нужно указывать до аргументов со значениями по умолчанию.
Сравнение объектов
В Python объект, созданный с помощью конструктора, занимает реальное место в памяти. Это значит, что у него есть точный адрес.
Атрибуты
В Python есть два похожих понятия, которые на самом деле отличаются:
Стоит разобрать на практике:
Атрибут
Объекты, созданные одним и тем же классом, будут занимать разные места в памяти, а их атрибуты с «одинаковыми именами» — ссылаться на разные адреса. Например:
Атрибуты функции
Обычно получать доступ к атрибутам объекта можно с помощью оператора «точка» (например, player1.name ). Но Python умеет делать это и с помощью функции.
Функция | Описание |
---|---|
getattr (obj, name[,default]) | Возвращает значение атрибута или значение по умолчанию, если первое не было указано |
hasattr (obj, name) | Проверяет атрибут объекта — был ли он передан аргументом «name» |
setattr (obj, name, value) | Задает значение атрибута. Если атрибута не существует, создает его |
delattr (obj, name) | Удаляет атрибут |
Встроенные атрибуты класса
Объекты класса — дочерние элементы по отношению к атрибутам самого языка Python. Таким образом они заимствуют некоторые атрибуты:
Переменные класса
Переменные класса в Python — это то же самое, что Field в других языках, таких как Java или С#. Получить к ним доступ можно только с помощью имени класса или объекта.
Для получения доступа к переменной класса лучше все-таки использовать имя класса, а не объект. Это поможет не путать «переменную класса» и атрибуты.
У каждой переменной класса есть свой адрес в памяти. И он доступен всем объектам класса.
Составляющие класса или объекта
Пользовательские атрибуты в Python
__dict__
В примере описан класс StuffHolder с одним атрибутом stuff, который, наследуют оба его экземпляра. Добавление объекту b атрибута b_stuff, никак не отражается на a.
Посмотрим на __dict__ всех действующих лиц:
(У класса StuffHolder в __dict__ хранится объект класса dict_proxy с кучей разного барахла, на которое пока не нужно обращать внимание).
Ни у a ни у b в __dict__ нет атрибута stuff, не найдя его там, механизм поиска ищет его в __dict__ класса (StuffHolder), успешно находит и возвращает значение, присвоенное ему в классе. Ссылка на класс хранится в атрибуте __class__ объекта.
Поиск атрибута происходит во время выполнения, так что даже после создания экземпляров, все изменения в __dict__ класса отразятся в них:
В случае присваивания значения атрибуту экземпляра, изменяется только __dict__ экземпляра, то есть значение в __dict__ класса остаётся неизменным (в случае, если значением атрибута класса не является data descriptor):
Если имена атрибутов в классе и экземпляре совпадают, интерпретатор при поиске значения выдаст значение экземпляра (в случае, если значением атрибута класса не является data descriptor):
По большому счёту это всё, что можно сказать про __dict__. Это хранилище атрибутов, определённых пользователем. Поиск в нём производится во время выполнения и при поиске учитывается __dict__ класса объекта и базовых классов. Также важно знать, что есть несколько способов переопределить это поведение. Одним из них является великий и могучий Дескриптор!
Дескрипторы
С простыми типами в качестве значений атрибутов пока всё ясно. Посмотрим, как ведёт себя функция в тех же условиях:
WTF!? Спросите вы… возможно. Я бы спросил. Чем функция в этом случае отличается от того, что мы уже видели? Ответ прост: методом __get__.
Этот метод переопределяет механизм получения значения атрибута func экземпляра fh, а объект, который реализует этот метод непереводимо называется non-data descriptor.
Дескриптор — это объект, доступ к которому через атрибут переопределён методами в дескриптор протоколе:
Дескрипторы данных
Рассмотрим повнимательней дескриптор данных:
Стоит обратить внимание, что вызов DataHolder.data передаёт в метод __get__ None вместо экземпляра класса.
Проверим утверждение о том, что у дата дескрипторов преимущество перед записями в __dict__ экземпляра:
Так и есть, запись в __dict__ экземпляра игнорируется, если в __dict__ класса экземпляра (или его базового класса) существует запись с тем же именем и значением — дескриптором данных.
Ещё один важный момент. Если изменить значение атрибута с дескриптором через класс, никаких методов дескриптора вызвано не будет, значение изменится в __dict__ класса как если бы это был обычный атрибут:
Дескрипторы не данных
Пример дескриптора не данных:
Его поведение слегка отличается от того, что вытворял дата-дескриптор. При попытке присвоить значение атрибуту non_data, оно записалось в __dict__ экземпляра, скрыв таким образом дескриптор, который хранится в __dict__ класса.
Примеры использования
Дескрипторы это мощный инструмент, позволяющий контролировать доступ к атрибутам экземпляра класса. Один из примеров их использования — функции, при вызове через экземпляр они становятся методами (см. пример выше). Также распространённый способ применения дескрипторов — создание свойства (property). Под свойством я подразумеваю некое значение, характеризующее состояние объекта, доступ к которому управляется с помощью специальных методов (геттеров, сеттеров). Создать свойство просто с помощью дескриптора:
Или можно воспользоваться встроенным классом property, он представляет собой дескриптор данных. Код, представленный выше можно переписать следующим образом:
В обоих случаях мы получим одинаковое поведение:
Важно знать, что property всегда является дескриптором данных. Если в его конструктор не передать какую либо из функций (геттер, сеттер или делитер), при попытке выполнить над атрибутом соответствующее действие — выкинется AttributeError.
__getattr__(), __setattr__(), __delattr__() и __getattribute__()
Если нужно определить поведение какого-либо объекта как атрибута, следует использовать дескрипторы (например property). Тоже справедливо для семейства объектов (например функций). Ещё один способ повлиять на доступ к атрибутам: методы __getattr__(), __setattr__(), __delattr__() и __getattribute__(). В отличие от дескрипторов их следует определять для объекта, содержащего атрибуты и вызываются они при доступе к любому атрибуту этого объекта.
__getattr__(self, name) будет вызван в случае, если запрашиваемый атрибут не найден обычным механизмом (в __dict__ экземпляра, класса и т.д.):
__getattribute__(self, name) будет вызван при попытке получить значение атрибута. Если этот метод переопределён, стандартный механизм поиска значения атрибута не будет задействован. Следует иметь ввиду, что вызов специальных методов (например __len__(), __str__()) через встроенные функции или неявный вызов через синтаксис языка осуществляется в обход __getattribute__().
__setattr__(self, name, value) будет вызван при попытке установить значение атрибута экземпляра. Аналогично __getattribute__(), если этот метод переопределён, стандартный механизм установки значения не будет задействован:
__delattr__(self, name) — аналогичен __setattr__(), но используется при удалении атрибута.
При переопределении __getattribute__(), __setattr__() и __delattr__() следует иметь ввиду, что стандартный способ получения доступа к атрибутам можно вызвать через object:
__slots__
… Я боялся что изменения в системе классов плохо повлияют на производительность. В частности, чтобы дескрипторы данных работали корректно, все манипуляции атрибутами объекта начинались с проверки __dict__ класса на то, что этот атрибут является дескриптором данных…
На случай, если пользователи разочаруются ухудшением производительности, заботливые разработчики python придумали __slots__.
Наличие __slots__ ограничивает возможные имена атрибутов объекта теми, которые там указаны. Также, так как все имена атрибутов теперь заранее известны, снимает необходимость создавать __dict__ экземпляра.
Оказалось, что опасения Guido не оправдались, но к тому времени, как это стало ясно, было уже слишком поздно. К тому же, использование __slots__ действительно может увеличить производительность, особенно уменьшив количество используемой памяти при создании множества небольших объектов.
Заключение
Доступ к атрибутом в python можно контролировать огромным количеством способов. Каждый из них решает свою задачу, а вместе они подходят практически под любой мыслимый сценарий использования объекта. Эти механизмы — основа гибкости языка, наряду с множественным наследованием, метаклассами и прочими вкусностями. У меня ушло некоторое время на то, чтобы разобраться, понять и, главное, принять это множество вариантов работы атрибутов. На первый взгляд оно показалось слегка избыточным и не особенно логичным, но, учитывая, что в ежедневном программировании это редко пригодиться, приятно иметь в своём арсенале такие мощные инструменты.
Надеюсь, и вам эта статья прояснила парочку моментов, до которых руки не доходили разобраться. И теперь, с огнём в глазах и уверенностью в Точке, вы напишите огромное количество наичистейшего, читаемого и устойчивого к изменениям требований кода! Ну или комментарий.
Заметки об объектной системе языка Python ч.1
Несколько заметок об объектной системе python’a. Рассчитаны на тех, кто уже умеет программировать на python. Речь идет только о новых классах (new-style classes) в python 2.3 и выше. В этой статье рассказывается, что такое объекты и как происходит поиск атрибутов.
Объекты
У a тоже есть __dict__ и __class__:
Класс и тип — это одно и то же.
a.__dict__ — это словарь, в котором находятся внутренние (или специфичные для объекта) атрибуты, в данном случае ‘name’. А в a.__class__ класс (тип).
И, например, в методах класса присваивание self.foo = bar практически идентично self.__dict__[‘foo’] = bar или сводится к аналогичному вызову.
В __dict__ объекта нет методов класса, дескрипторов, классовых переменных, свойств, статических методов класса, все они определяются динамически с помощью класса из __class__ атрибута, и являются специфичными именно для класса (типа) объекта, а не для самого объекта.
Пример. Переопределим класс объекта a:
Смотрим, что поменялось.
Значение a.name осталось прежним, т.е. __init__ не вызывался при смене класса.
Работа с атрибутам объекта: установка, удаление и поиск, равносильна вызову встроенных функций settattr, delattr, getattr:
a.x = 1 setattr(a, ‘x’, 1)
del a.x delattr(a, ‘x’)
a.x getattr(a, ‘x’)
При этом стоит стоит понимать, что setattr и delattr влияют и изменяют только сам объект (точнее a.__dict__), и не изменяют класс объекта.
qux — является классовой переменной, т.е. она «принадлежит» классу B, а не объекту a:
Если мы попытаемся удалить этот атрибут, то получим ошибку, т.к. delattr будет пытаться удалить атрибут из a.__dict__
Далее, если мы попытаемся изменить (установить) атрибут, setattr поместит его в __dict__, специфичный для данного, конкретного объекта.
Ну и раз есть ‘qux’ в __dict__ объекта, его можно удалить с помощью delattr:
После удаления, a.qux будет возвращать значение классовой переменной:
Объекты и классы
Классы — это объекты, и у них тоже есть специальные атрибуты __class__ и __dict__.
>>> class A ( object ):
. pass
.
Правда __dict__ у классов не совсем словарь
Но __dict__ ответственен за доступ к внутреннему пространству имен, в котором хранятся методы, дескрипторы, переменные, свойства и прочее:
В классах помимо __class__ и __dict__, имеется еще несколько специальных атрибутов: __bases__ — список прямых родителей, __name__ — имя класса. [1]
Классы можно считать эдакими расширениями обычных объектов, которые реализуют интерфейс типа. Множество всех классов (или типов) принадлежат множеству всех объектов, а точнее является его подмножеством. Иначе говоря, любой класс является объектом, но не всякий объект является классом. Договоримся называть обычными объектами(regular objects) те объекты, которые классами не являются.
Небольшая демонстрация, которая станет лучше понятна чуть позже.
Класс является объектом.
>>> class A ( object ):
. pass
.
>>> isinstance (A, object )
True
Число — это тоже объект.
Класс — это класс (т.е. тип).
>>> isinstance (A, type )
True
А вот число классом (типом) не является. (Что такое type будет пояснено позже)
Ну и a — тоже обычный объект.
>>> a = A()
>>> isinstance (a, A)
True
>>> isinstance (a, object )
True
>>> isinstance (a, type )
False
И у A всего один прямой родительский класс — object.
Часть специальных параметров можно даже менять:
С помощью getattr получаем доступ к атрибутам класса:
Поиск атрибутов в обычном объекте
В первом приближении алгоритм поиска выглядит так: сначала ищется в __dict__ объекта, потом идет поиск по __dict__ словарям класса объекта (который определяется с помощью __class__) и __dict__ его базовых классов в рекурсивном порядке.
Т.к. в обычных объектах a и b нет в __dict__ атрибута ‘qux’, то поиск продолжается во внутреннем словаре __dict__ их типа (класса), а потом по __dict__ словарям родителей в определенном порядке:
Меняем атрибут qux у класса A. И соответственно должны поменяться значения, которые возвращают экземпляры класса A — a и b:
Точно так же в рантайме к классу можно добавить метод:
И доступ к нему появится у экземпляров:
Точно так же как и с любыми другими объектами, можно удалить атрибут класса, например, классовую переменную qux:
Она удалиться из __dict__
И доступ у экземляров пропадет.
У классов почти такой же поиск атрибутов, как и у обычных объектов, но есть отличия: поиск начинается с собственного __dict__ словаря, а потом идет поиск по __dict__ словарям суперклассов (которые хранятся в __bases__) по опредленному алгоритму, а затем по классу в __class__ и его суперклассах. (Подробнее об этом позже).
Cсылки
Примечания
[1] О __module__ и __doc__ для простоты изложения пока забудем. Полный список атрибутов класса можно посмотреть в документации
Примеры работы с классами в Python
Python — объектно-ориентированный язык с начала его существования. Поэтому, создание и использование классов и объектов в Python просто и легко. Эта статья поможет разобраться на примерах в области поддержки объектно-ориентированного программирования Python. Если у вас нет опыта работы с объектно-ориентированным программированием (OOП), ознакомьтесь с вводным курсом или учебным пособием, чтобы понять основные понятия.
Создание классов
Пример создания класса на Python:
Создание экземпляров класса
Доступ к атрибутам
Теперь, систематизируем все.
При выполнении этого кода, мы получаем следующий результат:
Вы можете добавлять, удалять или изменять атрибуты классов и объектов в любой момент.
Вместо использования привычных операторов для доступа к атрибутам вы можете использовать эти функции:
Встроенные атрибуты класса
Для вышеуказанного класса давайте попробуем получить доступ ко всем этим атрибутам:
Когда этот код выполняется, он возвращает такой результат:
Удаление объектов (сбор мусора)
Python автоматически удаляет ненужные объекты (встроенные типы или экземпляры классов), чтобы освободить пространство памяти. С помощью процесса ‘Garbage Collection’ Python периодически восстанавливает блоки памяти, которые больше не используются.
Сборщик мусора Python запускается во время выполнения программы и тогда, когда количество ссылок на объект достигает нуля. С изменением количества обращений к нему, меняется количество ссылок.
Пример работы __del__()
Деструктор __del__() выводит имя класса того экземпляра, который должен быть уничтожен:
Когда вышеуказанный код выполняется и выводит следующее:
Наследование класса в python
Наследование — это процесс, когда один класс наследует атрибуты и методы другого. Класс, чьи свойства и методы наследуются, называют Родителем или Суперклассом. А класс, свойства которого наследуются — класс-потомок или Подкласс.
Вместо того, чтобы начинать с нуля, вы можете создать класс, на основе уже существующего. Укажите родительский класс в круглых скобках после имени нового класса.
Класс наследник наследует атрибуты своего родительского класса. Вы можете использовать эти атрибуты так, как будто они определены в классе наследнике. Он может переопределять элементы данных и методы родителя.
Синтаксис наследования класса
Классы наследники объявляются так, как и родительские классы. Только, список наследуемых классов, указан после имени класса.