что такое архитектура фон неймана

Закат архитектуры фон Неймана, о котором вы еще не слышали и что будет дальше?

За последние тридцать лет компьютеры настолько стали популярны, что успели изменить многие процессы в жизни человека и соответственно общества. С каждым годом, согласно закону Мура, они приобретают все больше вычислительных способностей, что позволяет им решать все более сложные задачи. Уже сегодня компьютеры столкнулись с рядом ограничений, которые не позволяют нам решать задачи из фильмов про будущее. Так ли будет и дальше, есть ли предел у современной архитектуры и что нам делать, если такой стремительный рост в дальнейшем невозможен?

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

На изображении отладочная плата с расположенными чипами Loihi.

Классическая архитектура фон Неймана

“Бутылочное горлышко” архитектуры фон Неймана.

Все классические компьютеры обладают так называемой архитектурой фон Неймана.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана
Рис. 1. The decline of von Neumanns architecture

Недостатком такой архитектуры является тот факт, что данные из области памяти цикл за циклом должны передаваться в область вычислительного юнита и обратно. Интерфейс, связывающий вычислительный юнит и память компьютера, ограничен в своей пропускной способности. Даже тот факт, что современные процессоры имеют несколько уровней кэша непосредственно в вычислительном юните, не решает проблему. Данный подход усугубляется необходимостью аккумулировать и структурировать данные для полного заполнения буфера вычисляемых операций. Можно привести метафору с поездом: пока все пассажиры не займут именно свои места в поезде, поезд никуда не поедет.

Физические ограничения материалов

Согласно закону Мура, количество транзисторов удваивается примерно каждые два года при уменьшении стоимости их производства. Реализуется этот факт посредством уменьшения размера транзистора. Уменьшение размеров транзистора приводит нас к еще одному ограничению: их размеры обусловлены физическими свойствами материалов из которых они производятся.

Реалии представляются таким образом, что этот закон начинает испытывать давление со стороны “законов физики микромира”.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана
Рис. 2. Уменьшение размеров транзистора приводит к ошибкам в его производстве

Тут мы сталкиваемся сразу с несколькими сложностями:

Отказоустойчивость и брак в производстве

Задумывались ли вы, как производят младшие модели процессоров и чипов для видеокарт? Вы наверное подумаете, что есть специально выделенные команды, которые разрабатывают каждый год новый упрощенный чип. На самом деле процесс выглядит по-другому. Компания разрабатывает один максимально мощный чип. Его устройство выглядит, как некая повторяющаяся архитектура. Обратите внимание на то, что практически все элементы дублируются, как и в авиации.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана
Рис. 3. Блок схема процессора Xeon

Это сделано для того, чтоб в том случае, если в каком-то блоке выйдет из строя большое количество транзисторов из-за брака во время производства, этот блок можно было отключить, а процессор целиком остался в рабочем состоянии. Как вы понимаете, производство процессоров очень дорогое, и одна из причин этого большой процент брака. Процент брака кристаллов для 28-ядерных процессоров Intel Xeon составляет до 65 %. Если у конечного процессора не работает один из блоков памяти или одно из ядер не проходит TDP тест, его отключают, а процессор упаковывают в коробку “младшей модели”.

Подход хороший, но он требует отключения очень больших блоков: в случае отказа нескольких транзисторов, которых в одном ядре может быть семьсот миллионов. То есть отказ 0.000000001% транзисторов приводит к потере 10% и более производительности устройства.

Если предположить, что мы можем создавать блоки, основанные на ста транзисторах при количестве этих самых блоков более миллиона мы бы получили значительный прирост отказоустойчивости в чипе. Это значит, что при выходе из строя небольшого количества транзисторов мы бы теряли очень маленький процент блоков от их общего числа. Этот подход сильно бы удешевил стоимость производства, и топовый чип стоил бы уже не, как малолитражный автомобиль, а как хорошая рубашка.

Потребление электроэнергии и размер суперкомпьютеров

В современном мире, когда мобильный телефон обладает вычислительными способностями компьютера пятилетней давности и при этом работает от аккумулятора, нам кажется, что мы почти достигли предела в уменьшении потребления энергии компьютерами. Но, если мы сравним вычислительные способности суперкомпьютера IBM Summit, его размеры и потребляемые им объемы энергии с мозгом мыши, окажется, что он неимоверно большой и очень неэффективный.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана
Рис 4. IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox
EDR InfiniBand, 2.41 million cores, 148.6 petaflops
Пиковая потребляемая мощность: 13 000 000 W
Размеры: 4,608 nodes * 0.2 m^3 = 920 m^3
Мозг мыши способен обрабатывать куда более сложные задачи при потреблении всего 1-5 ватт.

Online learning and continuous-flow

Тут хочется сказать больше об алгоритмах, нежели об архитектуре, хотя в данном контексте алгоритмы продиктованы архитектурой. Современный компьютер хорошо справляется с дискретными данными, когда есть, пускай и большое количество, но все же порционных, конечных, желательно целочисленных данных, тут он может себя проявить очень хорошо. Но вот, когда речь заходит о последовательностях, непрерывности, бесконечно малых или бесконечно больших значениях, тут мы пытаемся найти некое приближение. В результате мы интерпретируем наши данные в последовательность дискретных кадров, дробим, разделяем и обрабатываем каждый фрейм как нечто статическое и конечное.

Да, сейчас существуют различные подходы bi-directional soft attention (см. BERT) для того, чтобы связывать эти самые кадры в работе с языковыми моделями. Также современные подходы машинного обучения лишены возможности обучаться непосредственно в процессе решения поставленной задачи. Это все еще две различные задачи.

Параллелизм и масштабируемость

Возвращаясь к архитектуре фон Неймана, мы видим, что весь поток данных проходит через некий вычислительный центр, то есть по сути еще одно узкое горлышко. Количество ядер в современных чипах растет, но вслед за этим возникает и новая проблема: сперва данные нужно распараллелить, а после синхронизировать результаты. То есть, если у вас множество независимых входных сигналов и они не связаны между собой ни во времени, ни в контексте, множество ядер процессоров и ядер видеокарт хорошо справляются с этой задачей. Но в том случае, если у вас большой входной сигнал, то задача параллелизма вычислений, синхронизации результатов может занять большую часть этих самых вычислений.

Оригинал статьи
В следующей статье я рассказываю как решают все перечисленные сложности по средствам Neuromorphic архитектуры.

Источник

Архитектура фон Неймана

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Архитектура фон Неймана — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных.

Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, перекоммутации и перестройки блоков и устройств и т. п.

Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ.

Содержание

Принципы фон Неймана

Принцип однородности памяти Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресуемости памяти Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен. Принцип последовательного программного управления Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип жесткости архитектуры Неизменяемость в процессе работы топологии, архитектуры, списка команд.

Так же в некоторых источниках [каких?] указывается принцип двоичного кодирования, но существовали машины работающие с троичным и с десятичным кодом.

Компьютеры, построенные на принципах фон Неймана

В середине 1940-х проект компьютера, хранящего свои программы в общей памяти, был разработан в Школе электрических разработок Мура (англ. Moore School of Electrical Engineering ) в Университете штата Пенсильвания. Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру ENIAC, который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании ENIAC. По плану предполагалось осуществить проект силами Муровской школы в машине EDVAC, однако до 1951 года EDVAC не был запущен из-за технических трудностей в создании надёжной компьютерной памяти и разногласий в группе разработчиков. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми семью компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были:

Узкое место архитектуры фон Неймана

Источник

Собственная платформа. Часть 0.1 Теория. Немного о процессорах

Здравствуй, мир! Сегодня у нас серия статьей для людей со средними знаниями о работе процессора в которой мы будем разбираться с процессорными архитектурами (у меня спелл чекер ругается на слово Архитектурами/Архитектур, надеюсь я пишу слово правильно), создавать собственную архитектуру процессора и многое другое.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Принимаются любые замечания!

Немного про архитектуру процессора

Исторически сложилось, что существуют много процессоров и много архитектур. Но многие архитектуры имеют схожести. Специально для этого появились «Группы» архитектур типа RISC, CISC, MISC, OISC (URISC). Кроме того они могут иметь разные архитектуры адресации памяти (фон Неймана, Гарвард). У каждого процессора есть своя архитектура. Например большинство современных архитектур это RISC (ARM, MIPS, OpenRISC, RISC-V, AVR, PIC** и т.д.), но есть архитектуры которые выиграли просто за счет других факторов (Например удобство/цена/популярность/etc) Среди которых x86, x86-64 (Стоит отметить, что x86-64 и x86 в последних процессорах используют микрокод и внутри них стоит RISC ядро), M68K. В чем же их отличие?

Reduced Instruction Set Computer — Архитектура с уменьшенным временем выполнения инструкций (из расшифровка RISC можно подумать, что это уменьшенное количество инструкций, но это не так). Данное направления развилось в итоге после того, как оказалось, что большинство компиляторов того времени не использовали все инструкции и разработчики процессоров решили получить больше производительности использую Конвейеры. В целом RISC является золотой серединой между всеми архитектурами.

Яркие примеры данной архитектуры: ARM, MIPS, OpenRISC, RISC-V

Что такое TTA? ТТА это Архитектура на основе всего одной инструкции перемещения из одного адреса памяти в другую. Данный вариант усложняет работу компилятора зато дает большую производительность. У данной архитектуры есть единственный недостаток: Сильная зависимость от шины данных. Именно это и стало причиной ее меньшей популярности. Надо отметить что TTA является разновидностью OISC.

Яркие примеры: MOVE Project

OISC (URISC)?

One Instruction Set Computer — Архитектура с единственной инструкцией. Например SUBLEQ. Такие архитектуры часто имеют вид: Сделать действие и в зависимости от результата сделать прыжок или продолжить исполнение. Зачастую ее реализация достаточно простая, производительность маленькая, при этом снова ограничение шиной данных.

Яркие примеры: BitBitJump, ByteByteJump, SUBLEQ тысячи их!

CISC — Complex Instruction Set Computer — ее особенность в увеличенных количествах действий за инструкцию. Таким образом можно было теоретически увеличить производительность программ за счет увеличения сложности компилятора. Но по факту у CISC плохо были реализованы некоторые инструкции т.к. они редко использовались, и повышение производительности не было достигнуто. Особенностью этой группы является еще ОГРОМНАЯ Разница между архитектурами. И несмотря на названия были архитектуры с маленьким количеством инструкций.

Яркие примеры: x86, M68K

Адресация памяти

Архитектура фон Неймана

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Особенностью таких архитектур была общая шина данных и инструкций. Большинство современных архитектур это программный фон Нейман, однако никто не запрещает делать аппаратный Гарвард. У данной архитектуры большим недостатком является большое зависимости производительности процессора от шины. (Что ограничивает общую производительность процессора).

Архитектура гарварда

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Особенность этой архитектуры является отдельная шина данных и инструкций. Дает большую производительность чем фон Нейман за счет возможности за один такт использовать обе шины (читать из шины инструкций и одновременно записывать в шинну данных), но осложняет архитектуру и имеет некоторые ограничения. В основном используется в микроконтроллерах.

Особенности процессоров

Конвейеры

Что такое конвейеры? Если сказать очень глупым языком это несколько параллельных действий за один такт. Это очень грубо, но при этом отображает суть. Конвейеры за счет усложнения архитектуры позволяют поднять производительность. Например конвейер позволяет прочитать инструкцию, исполнить предыдущую и записать в шину данных одновременно.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана
На картинке более понятно, не правда?

IF — получение инструкции,
ID — расшифровка инструкции,
EX — выполнение,
MEM — доступ к памяти,
WB — запись в регистр.

Вроде все просто? А вот и нет! Проблема в том что например прыжок (jmp/branch/etc) заставляют конвейер начать исполнение (получение след. инструкции) заново таким образом вызывая задержку в 2-4 такта перед исполнение следующей инструкции.

Расширение существующих архитектур

Достаточно популярной техникой является добавление в уже существующую архитектуру больше инструкций через расширения. Ярким примером является SSE под x86. Этим же грешит ARM и MIPS и практически все. Почему? Потому что нельзя создать унивирсальную архитектуру.

Другим вариантом является использование других архитектур для уменьшения размера инструкций.
Яркий пример: ARM со своим Thumb, MIPS с MIPS16.

Техники применяемые в GPU

В видеокартах часто встречается много ядер и из-за этой особенности появилась потребность в дополнительных решениях. Если конвейеры можно встретить даже в микроконтроллерах то решения используемых в GPU встречаются редко. Например Masked Execution (Встречается в инструкциях ARM, но не в Thumb-I/II). Еще есть другие особенность: это уклон в сторону Floating Number (Числа с плавающей запятой), Уменьшение производительности в противовес большего количества ядер и т.д.

Masked Execution

Данный режим отличается от классических тем, что инструкции исполняются последовательно без использования прыжков. В инструкции хранится некоторое количество информации о том при каких условия эта инструкция будет исполнена и если условие не соблюдено то инструкция пропускается.

Ответ прост! Что бы не нагружать шину инструкций. Например в видеокартах можно загрузить тысячи ядер одной инструкцией. А если бы использовалась система прыжков то пришлось бы для каждого ядра ждать инструкцию из медленной памяти. Кеш частично решает проблему, но все еще не решает проблему полностью.

Прочее

Здесь мы будем описывать несколько техник используемых в центральный процессорах и микроконтроллерах.

Прерывания

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Прерывания это техника при которой исполняемый в данный момент код приостанавливается для выполнения какой-то другой задачи при каких-то условиях. Например при доступе в несуществующий участок памяти вызывается HardFault или MemoryFault прерывания или исключения. Или например если таймер отсчитал до нуля. Это позволяет не бездействовать пока нужно ждать какое-то событие.

Какие недостатки? Вызов прерывания это несколько тактов простоя и несколько при возврате из прерывания. Так же несколько инструкций в начале кода будет занято инструкциями для Таблицы прерываний.

Exception (исключения)

Но кроме прерываний еще существуют исключений которые возникают например при деления на ноль. Зачастую его совмещают с прерываниями и системными вызовами, как например в MIPS. Исключения не всегда присутствуют в процессоре например как в AVR или младших PIC

Системные вызовы

Системные вызовы используется в Операционных системах для того, чтобы программы могли общаться с операционной системой например просить ОС прочитать файл. Очень похоже на прерывания. Аналогично исключениям не всегда присутствуют в процессоре

Контроллеры доступа в память и прочие методы сдерживания программ

Здесь описываются методы запрета доступа приложений к аппаратуре напрямую.

Привилегированный режим

Это режим в котором стартует процессор. В таком режиме программа или ОС имеют полный доступ к памяти в обход MMU/MPU. Все программы запускаются в непривилегированном режиме во избежания прямого доступа к аппаратным подсистемам программ для этого не предназначенных. Например вредоносным программам. В Windows ее часто называют Ring-0, а в *nix — системным. Не стоит путать Привелигированный пользователь и Привилегированный режим ибо в руте вы все еще не можете иметь прямой доступ к аппаратуре (можно загрузить системный модуль который позволит это сделать, но об этом чуть позже 🙂

MPU и MMU

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

MPU и MMU используется в современных системах чтобы изолировать несколько приложений. НО если MMU позволяет «передвинуть» память то MPU позволяет только блокировать доступ к памяти/запуск кода в памяти.

PIC (PIE)

Что такое PIE? (PIC не использую для избежания путаницы с МК PIC). PIE это техника благодаря которой компилятор генерирует код который будет работать в любом месте в памяти. Эта техника в совмещении с MPU позволяет компилировать высокие языки программирования которые будут работать и с MPU.

Популярная техника SIMD используется для того, что бы за один такт выполнять несколько действий над несколькими регистрами. Иногда бывают в качестве дополнений к основной архитектуре, например, как в MIPS, ARM со своими NEON/VFP/etc, x86 со своим SSE2.

Reposition for Optimization

Это техника Используется для оптимизации кода, генерируемого компилятором, с помощью пересортировки инструкций, увеличивая производительность процессора. Это позволяет использовать конвейер на полную.

Status register

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Что такое регистр статуса? Это регистр который хранит состояние процессора. Например находится ли процессор в привилегированном режиме, чем закончилась операция последнего сравнения.

Используется в связке с Masked Execution. Некоторые разработчики специально исключают регистр статуса ибо он может являться узким местом как поступили в MIPS.

В MIPS нет отдельной инструкции загрузки константы в память, но есть инструкция addi и ori которая позволяет в связке с нулевым регистром ($0) эмулировать работу загрузки константы в регистр. В других архитектурах она присутствует. Я затронул эту тему, потому что она пригодиться нам в статьях с практикой.

Rd, Rs vs Rd, rs, rt

Идут множество споров насчет того сколько должно быть операндов в арифметических инструкциях. Например в MIPS используется вариант с 3-мя регистрами. 2 операнда, 1 регистр записи. С другой стороны, использование двух операндов позволяет сократить код за счет уменьшения размера инструкции. Пример совмещения является MIPS16 в MIPS и Thumb-I в ARM. В плане производительности они практически идентичны (Если исключать размер инструкции как фактор).

Endianness

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Порядок байт. Возможно вам знакомы Выражения Big-Endian и Little-Endian. Они описывают порядок байт в инструкциях/в регистрах/в памяти/etc. Здесь думаю все просто :). Есть процессоры которые совмещают режимы, как MIPS, или которые используют одну систему команд, но имеют разный порядок байт, например ARM.

Битность процессора

Итак, что такое битность процессора? Многие считают, что это битность шины данных, но это не так. Почему? В ранние переоды микроконтроллеров и микропроцессоров шина могла быть, например, 4-х битной, но передавала пакетами по 8 бит. Для программы казалось, что это 8-и битный режим, но это была иллюзия, как и сейчас. Например, в ARM SoC-ах часто применяют 128-и битную шину данных или инструкций.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Сопроцессоры

Что такое сопроцессоры? Сопроцессоры являются элементами процессора или внешней микросхемой. Они позволяют исполнять инструкции, которые слишком громоздки для основной части процессора. Как яркий пример, сопроцессоры в MIPS для деления и умножения. Или например 387 для 80386, который добавлял поддержку чисел с плавающей запятой. А в MIPS сопроцессоров было много и они выполняли свои роли: контролировали прерывания, исключения и системные вызовы. Часто сопроцессоры имеют собственные инструкции и на системах, где этих инструкций нет, (пример ARM) эмулируют ее через Trap-ы (ловушки?). Несмотря на костыльность и маленькую производительность, они часто являются единственным выбором в микроконтроллерах.

Атомарность операций

Атомартность операций обеспечивает потоко-независимое исполнение за счет инструкций, которые выполняют несколько действий за один псевдотакт.

Вариант другого решения атомарность переферии. Например для установки ножки в STM32 в высокое и низкое состояние используется разные регистры, что позволяет иметь атомарность на уровне переферии.

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Вы, навярняка, слышали о L1, L2, L3 и регистрах. Если коротко, процессор анализирует часть кода, чтобы предугадать прыжки и доступ в память и зараннее просит кеш получить эти данные из памяти. Кеш зачастую бывает прозрачным для программы, но бывают и исключения из этого правила. Например, в программных ядрах в ПЛИС используется програмный кеш.

И вы кончено слышали о такой вещи, как Cache Miss или промах по кешу. Это операция которая не была предусмотрена процессорам или процессор не успел закешировать эту часть памяти. Что достаточно часто является проблемой замедления доступа к памяти. Промах проходит незаметно для программы, но не останутся незаметными просадки в производительности.Так же переключения контекстов например при прерываниях тоже заставляет страдать кеш ибо небольшой код сбивает конвейер и кеш для собственных нужд.

Shadow Registers

В современных процессорах часто используется техника теневых регистров. Они позволяют переключаться между прерываниями и пользовательским кодом практически без задержек связанных с сохранением регистров.

Stack

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Спросите тогда что такое куча (Heap)? Куча это память размером намного больше чем стек (Стек обычно

1MB). В хипе храниться все глобальное. Например все указатели полученные с помощю Malloc указывают на часть куча. А указатели хранятся в стеке или в регистрах. С помощью инструкций загрузки данных относительно регистра можно ускорить работу стека и других доступов к памяти по типу стека, поскольку не нужно постоянно использовать операции PUSH/POP, INC/DEC или ADDI, SUBI (добавить константу), чтобы получить данные глубже по стеку, а можно просто использовать доступ относительно стека с отрицательным смещением.

Регистры

что такое архитектура фон неймана. Смотреть фото что такое архитектура фон неймана. Смотреть картинку что такое архитектура фон неймана. Картинка про что такое архитектура фон неймана. Фото что такое архитектура фон неймана

Не буду описывать регистры слишком подробно. Это мы затронем в практической статье.

В x86 регистров достаточно мало. В MIPS используется увеличенное количество регистров, а именно 31 ($0 имеет значение всегда равное нулю). В процессоре университета Беркли использовались регистровые окна, которые жестки ограничивали вложенность функций, при этом имея лучшую производительность. В других же, таких как AVR, ограничили использование регистров. Для примера: три 16-битных можно трактовать как шесть восьмибитных, где первые 16ть недоступны при некоторых операциях. Я считаю, что лучший метод был выбран MIPS-ом. Это мое сугубо личное мнение.

Выравнивание

Что такое выравнивание? Оставлю-ка я этот вопрос вам 🙂

Конец

Это конец первой главы нулевой части. Вся серия будет крутиться вокруг темы создания собственного процессора. Собственной операционной системы. Собственного ассемблера. Собственного компилятора и много чего другого.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *