что такое альфа м в жбк

Защитный слой бетона для арматуры по СП 63.13330

Защитный слой бетона — это толщина слоя бетона от грани элемента до ближайшей поверхности арматурного стержня (п.3.5 СП 63.13330.2018).

Для чего необходим защитный слой бетона:

Согласно п. 10.3.2 и таблице 10.1 СП 63.13330.2018 толщина минимального защитного слой бетона должна составлять:

Важные примечания!

1. Толщину защитного слоя бетона следует принимать не менее диаметра стержня арматуры и не менее 10 мм.

2. Для конструктивной арматуры (не рабочей) толщину защитного слоя бетона допустимо уменьшать на 5 мм (по сравнению с требуемыми для рабочей арматуры).

3. Для сборных элементов (сборные плиты перекрытия и покрытия, балки и т.д.) толщину защитного слоя бетона рабочей арматуры уменьшают на 5 мм.

4. В однослойных конструкциях из ячеистого бетона толщина защитного слоя во всех случаях принимается не менее 25 мм.

5. В однослойных конструкциях из легкого и поризованного бетонов классов В7,5 и ниже толщина защитного слоя должна составлять не менее 20 мм, а для наружных стеновых панелей (без фактурного слоя) — не менее 25 мм.

6. Толщина защитного слоя бетона у концов предварительно напряженных элементов на длине зоны передачи напряжений должна составлять не менее 3d и не менее 40 мм — для стержневой арматуры и не менее 20 мм — для арматурных канатов.

7. Допускается защитный слой бетона сечения у опоры для напрягаемой арматуры с анкерами и без них принимать таким же, как для сечения в пролете для преднапряженных элементов с сосредоточенной передачей опорных усилий при наличии стальной опорной детали и косвенной арматуры (сварных поперечных сеток или охватывающих продольную арматуру хомутов).

8. В элементах с напрягаемой продольной арматурой, натягиваемой на бетон и располагаемой в каналах, расстояние от поверхности элемента до поверхности канала следует принимать не менее 40 мм и не менее ширины (диаметра) канала, а до боковых граней — не менее половины высоты (диаметра) канала.

9. При расположении напрягаемой арматуры в пазах или снаружи сечения элемента толщину защитного слоя бетона, образуемого последующим торкретированием или иным способом, следует принимать не менее 20 мм.

Источник

Расстояние между арматурой по СП 63.13330 (СНиП 52-01-2003)

Требования к минимальному расстоянию между стержнями арматуры

Требования к минимальному расстоянию между стержнями арматуры приведены в разделе 10.3 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003. (раздел 10.3 СП 63.13330.2018)

Для чего необходим обеспечить минимальное расстояние между стержнями в железобетонной конструкции:

Согласно п. 10.3.5 (СП 63.13330.2012, СП 63.13330.2018), минимальное расстояние между стержнями арматуры должно составлять:

1. Не менее наибольшего диаметра стержня!

2. При горизонтальном или наклонном положении стержней в один или два ряда при бетонировании:

3. При горизонтальном или наклонном положении стержней более чем в два ряда при бетонировании:

4. При вертикальном положении стержней при бетонировании.

5. При стесненных условиях допускается располагать стержни группами — пучками (без зазора между ними).

При этом расстояния в свету между пучками должны быть также не менее приведенного диаметра стержня, эквивалентного по площади сечения пучка арматуры, принимаемого равным по формуле:

что такое альфа м в жбк. Смотреть фото что такое альфа м в жбк. Смотреть картинку что такое альфа м в жбк. Картинка про что такое альфа м в жбк. Фото что такое альфа м в жбк

n- число стержней в пучке.

Требования к максимальному расстоянию между стержнями арматуры

Требования к максимальному расстоянию между стержнями арматуры приведены в разделе 10.3 СП 63.13330.2012 Бетонные и железобетонные конструкции. Основные положения. Актуализированная редакция СНиП 52-01-2003.

Для продольной арматуры

В соответствии с п.10.3.8 — 10.3.10 СП 63.13330.2012 (СП 63.13330.2018), максимальное расстояние между осями стержней продольной арматуры составляет:

1. в железобетонных балках и плитах:

2. в железобетонных колоннах:

3. В железобетонных стенах:

Важные примечания!

Для поперечной арматуры

В соответствии с п.10.3.11-10.3.20- СП 63.13330.2012 (СП 63.13330.2018), максимальное расстояние между осями стержней продольной арматуры составляет:

Поперечную арматуру устанавливают у всех поверхностей железобетонных элементов, вблизи которых ставится продольная арматура.

Ее устанавливают с целью восприятие усилий, а также ограничения развития трещин, удержания продольных стержней в проектном положении и закрепления их от бокового выпучивания в любом направлении.

Диаметр поперечной арматуры (хомутов) в вязаных каркасах внецентренно сжатых элементов (колонны, стойки и т.д.) принимают не менее 0,25 наибольшего диаметра продольной арматуры и не менее 6 мм.

Диаметр поперечной арматуры в вязаных каркасах изгибаемых элементов (балках, ригелях и т.д) принимают не менее 6 мм.

В сварных каркасах диаметр поперечной арматуры принимают не менее диаметра, устанавливаемого из условия сварки с наибольшим диаметром продольной арматуры.
Максимальное расстояние для поперечной арматуры:

Важные примечания!

h0 — рабочая высота сечения в м, вычисляется по формуле

h — высота сечения в м.

a’ — расстояние от центра тяжести растянутой арматуры, до ближайшего края сечения

Рабочая высота сечения — это расстояние от сжатой грани элемента до центра тяжести растянутой продольной арматуры (п.3.22 СП63).

Источник

коэффициент армирования железобетона μ. Коэффициент армирования железобетона

Какой минимальный процент армирования железобетонных конструкций?

В строительной отрасли широко применяются конструкции из железобетона, надежность и долговечность которых обеспечивает металлический каркас. Он способен воспринимать значительную нагрузку, если правильно подобрать сечение рифленого прута арматуры, а также выдержать расстояние между арматурой и поверхностью бетона в стенах, колоннах, фундаментах и балках. Зная процент армирования, для вычисления которого выполняются специальные расчеты, несложно определить минимальное количество арматуры. Проектируя каркас, важно уметь определять армирующий показатель.

Как рассчитать куб раствора для ленточного фундамента

Чтобы рассчитать объем бетона в м3 для МЗЛФ или для заглублённого фундамента, необходимо знать значение периметра основания в метрах.

Формула для расчёта:

Расчётная норма смеси отображается в кубических метрах.

что такое альфа м в жбк. Смотреть фото что такое альфа м в жбк. Смотреть картинку что такое альфа м в жбк. Картинка про что такое альфа м в жбк. Фото что такое альфа м в жбк

Формула процента армирования железобетонных конструкций – соотношение бетона

В процессе длительной эксплуатации строительные конструкции подвергаются воздействию сжимающих и изгибающих нагрузок, а также крутящих моментов. Для усиления выносливости железобетона и расширения сферы его использования выполняется усиление бетона арматурой. В зависимости от массы каркаса, диаметра прутков в поперечном сечении и пропорции бетона изменяется коэффициент армирования железобетонных конструкций.

Разберемся, как вычисляется данный показатель согласно требованиям стандарта.

что такое альфа м в жбк. Смотреть фото что такое альфа м в жбк. Смотреть картинку что такое альфа м в жбк. Картинка про что такое альфа м в жбк. Фото что такое альфа м в жбк
Для того, чтобы армирование выполняло свое назначение, необходимо расчитать усиление бетона, соответствующий минимальному проценту

Процент армирования колонны, балки, фундаментной основы или капитальных стен определяется следующим образом:

Коэффициент армирования бетона – важный показатель, применяемый при выполнении различных видов прочностных расчетов. Удельный вес арматуры изменяется:

Для определения армирующего показателя на подготовительном этапе выполняются прочностные расчеты, разрабатывается документация и делается чертеж армирования. При этом учитывается толщина бетонного массива, конструкция металлического каркаса и размер сечения прутков. Данная площадь определяет нагрузочную способность силовой решетки. При увеличении сортамента арматуры возрастает степень армирования и, соответственно, прочность бетонных конструкций. Целесообразно отдать предпочтение стержням диаметром 12–14 мм, обладающим повышенным запасом прочности.

Показатель армирования имеет предельные значения:

Соблюдение требований строительных норм и стандартов по степени армирования гарантирует надежность конструкций из железобетона. Остановимся более детально на предельной величине армирующего процента.

Коэффициент армирования железобетона — это… Что такое Коэффициент армирования железобетона?

Коэффициент армирования железобетона – отношение площади сечения арматуры к рабочей площади сечения бетона, выраженное в процентах.

Коэффициент армирования железобетона и/или конструкций — отношение площади сечения арматуры к площади сечения бетона, выраженное в %.

[Ушеров-Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы.- 2009. – 112 с.]

Рубрика термина: Теория и расчет конструкций

Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника, Автотранспорт, Акустические материалы, Акустические свойства, Арки, Арматура, Арматурное оборудование, Архитектура, Асбест, Аспирация, Асфальт, Балки, Без рубрики, Бетон, Бетонные и железобетонные, Блоки, Блоки оконные и дверные, Бревно, Брус, Ванты, Вентиляция, Весовое оборудование, Виброзащита, Вибротехника, Виды арматуры, Виды бетона, Виды вибрации, Виды испарений, Виды испытаний, Виды камней, Виды кирпича, Виды кладки, Виды контроля, Виды коррозии, Виды нагрузок на материалы, Виды полов, Виды стекла, Виды цемента, Водонапорное оборудование, Водоснабжение, вода, Вяжущие вещества, Герметики, Гидроизоляционное оборудование, Гидроизоляционные материалы, Гипс, Горное оборудование, Горные породы, Горючесть материалов, Гравий, Грузоподъемные механизмы, Грунтовки, ДВП, Деревообрабатывающее оборудование, Деревообработка, ДЕФЕКТЫ, Дефекты керамики, Дефекты краски, Дефекты стекла, Дефекты структуры бетона, Дефекты, деревообработка, Деформации материалов, Добавки, Добавки в бетон, Добавки к цементу, Дозаторы, Древесина, ДСП, ЖД транспорт, Заводы, Заводы, производства, цеха, Замазки, Заполнители для бетона, Защита бетона, Защита древесины, Защита от коррозии, Звукопоглащающий материал, Золы, Известь, Изделия деревянные, Изделия из стекла, Инструменты, Инструменты геодезия, Испытания бетона, Испытательное оборудование, Качество цемента, Качество, контроль, Керамика, Керамика и огнеупоры, Клеи, Клинкер, Колодцы, Колонны, Компрессорное оборудование, Конвеера, Конструкции ЖБИ, Конструкции металлические, Конструкции прочие, Коррозия материалов, Крановое оборудование, Краски, Лаки, Легкие бетоны, Легкие наполнители для бетона, Лестницы, Лотки, Мастики, Мельницы, Минералы, Монтажное оборудование, Мосты, Напыления, Обжиговое оборудование, Обои, Оборудование, Оборудование для производства бетона, Оборудование для производства вяжущие, Оборудование для производства керамики, Оборудование для производства стекла, Оборудование для производства цемента, Общие, Общие термины, Общие термины, бетон, Общие термины, деревообработка, Общие термины, оборудование, Общие, заводы, Общие, заполнители, Общие, качество, Общие, коррозия, Общие, краски, Общие, стекло, Огнезащита материалов, Огнеупоры, Опалубка, Освещение, Отделочные материалы, Отклонения при испытаниях, Отходы, Отходы производства, Панели, Паркет, Перемычки, Песок, Пигменты, Пиломатериал, Питатели, Пластификаторы для бетона, Пластифицирующие добавки, Плиты, Покрытия, Полимерное оборудование, Полимеры, Половое покрытие, Полы, Прессовое оборудование, Приборы, Приспособления, Прогоны, Проектирование, Производства, Противоморозные добавки, Противопожарное оборудование, Прочие, Прочие, бетон, Прочие, замазки, Прочие, краски, Прочие, оборудование, Разновидности древесины, Разрушения материалов, Раствор, Ригеля, Сваи, Сваизабивное оборудование, Сварка, Сварочное оборудование, Свойства, Свойства бетона, Свойства вяжущих веществ, Свойства горной породы, Свойства камней, Свойства материалов, Свойства цемента, Сейсмика, Склады, Скобяные изделия, Смеси сухие, Смолы, Стекло, Строительная химия, Строительные материалы, Суперпластификаторы, Сушильное оборудование, Сушка, Сушка, деревообработка, Сырье, Теория и расчет конструкций, Тепловое оборудование, Тепловые свойства материалов, Теплоизоляционные материалы, Теплоизоляционные свойства материалов, Термовлажносная обработка бетона, Техника безопасности, Технологии, Технологии бетонирования, Технологии керамики, Трубы, Фанера, Фермы, Фибра, Фундаменты, Фурнитура, Цемент, Цеха, Шлаки, Шлифовальное оборудование, Шпаклевки, Шпон, Штукатурное оборудование, Шум, Щебень, Экономика, Эмали, Эмульсии, Энергетическое оборудование

Источник: Энциклопедия терминов, определений и пояснений строительных материалов

Энциклопедия терминов, определений и пояснений строительных материалов. — Калининград. Под редакцией Ложкина В.П.. 2015-2016.

Минимальный процент армирования в конструкциях из железобетона

Рассмотрим, что выражает минимальный процент армирования. Это предельно допустимое значение, ниже которого резко повышается вероятность разрушения строительных конструкций. При показателе ниже 0,05% изделия и конструкции нельзя называть железобетонными. Меньшее значение свидетельствует о локальном усилении бетона с помощью металлической арматуры.

В зависимости от особенностей приложения нагрузки минимальный показатель изменяется в следующих пределах:

При выполнении усиления в продольной плоскости по контуру рабочего сечения коэффициент армирования вдвое превышает указанные значения.

Основы расчета железобетона. 200 вопросов и ответов, стр. №25

127. Можно ли заранее определить, по какому случаю следует рассчитывать внецентренно сжатое сечение?

Можно, но только ориентировочно: при ео > 0,3ho по случаю 1, при ео ≤ 0,3ho по случаю 2. Точный ответ даст величина сжатой зоны, определяемая расчетом (см. вопрос 122).

128. Если сжимающая сила приложена с заведомо малым эксцентриситетом, может ли возникнуть 1-й случай расчета?

Если расчет выполнять формально, не вдумываясь в его физический смысл, то вполне может (например, при небольшой величине продольной силы и мощном бетонном сечении или мощном продольном армировании). Однако более внимательный анализ покажет, что в этом случае ось равнодействующей ∑N внутренних сил в сечении не совпадает с осью внешней силы N, т.е. равновесие не обеспечивается. Если же ось ∑N привести в соответствие с осью N, то выяснится, что напряжения в бетоне и арматуре меньше их расчетных сопротивлений — сечение попросту недогружено.

129. Как определить несущую способность нормального сечения на внецентренное сжатие?

Как видно из ответа на вопрос 124, сделать это легко, но… когда величины усилий N и М от внешней нагрузки уже известны. Если нет, то задача отыскания Nu и Mu резко усложняется. Она, в отличие от поперечного изгиба, становится двухмерной, а ее решение выглядит в виде диаграммы Nu — Mu (рис. 67). Построить диаграмму можно, задаваясь значениями x от 0 до 1, определяя каждый раз (Ne)u из условия ∑Мs= 0 и Nu из условия ∑N= 0. Далее следует определить е = (Ne)u /Nu, eo = e — (0,5h- a), а затем и Мu = =Nueo. Внутри кривой Mu — Nu и лежит область несущей способности, где могут располагаться точки с самыми разнообразными сочетаниями усилий М и N от внешней нагрузки

Здесь необходимо отметить одну особенность. При х = h (что примерно соответствует x = 1,1) величина Nu возрастает еще больше, но при этом Мu = 0, что означает центральное сжатие. Поскольку его в расчетах не допускают, верхушку графика приходится срезать и величинуx ограничивать единицей (т.е. х = ho).

При большом объеме проектных работ строить подобные графики для каждого конкретного сечения не всегда удобно, поэтому пользуются графиками не в абсолютных величинах Мu и Nu, а в относительных: am = М/Rbbho2 и an = N/Rbbho — они приведены в справочной литературе.

130. Какой смысл проектировать внецентренно сжатые элементы с симметричной арматурой?

Многие внецентренно сжатые элементы, особенно колонны, воспринимают знакопеременные моменты, когда нагрузка с равной вероятностью может быть приложена с одной и с другой стороны оси. В соответствии с этим и арматура может менять свою работу: из сжатой S´ превращаться в растянутую (менее сжатую) S. Если же в результате статического расчета окажется ео= 0 (центральное сжатие) и учитывается только случайный эксцентриситет ео = еа, то вся арматура становится полностью сжатой, а напряжения в ней ssc = s´sc. Во всех этих случаях есть прямой смысл устанавливать симметричную арматуру Аs = A´s.

131. Как подобрать арматуру в прямоугольном сечении при внецентренном сжатии?

При x > xR возникает 2-й случай, в арматуре S напряжения ss что такое альфа м в жбк. Смотреть фото что такое альфа м в жбк. Смотреть картинку что такое альфа м в жбк. Картинка про что такое альфа м в жбк. Фото что такое альфа м в жбк

Исходя из количества пролетов и характера крепления, балки и перекрытия из железобетона бывают: однопролетные и многопролетные, а также свободно лежащие, защемленные (как на одной, так и на нескольких опорах), консольные и неразрезные.

Профили и размеры

Лучшим вариантом для плит перекрытия является монолитная плита.

Такие перекрытия применяют отдельно или комплексно: в конструкции самого перекрытия или для фундамента. Перпендикулярный профиль монолитных железобетонных балок в основном имеет прямоугольную или тавровую форму. Существуют и другие виды, например, двутавровая, коробчатая, трапециевидная и др., но их не применяют, так как при выполнении армирования таких железобетонных балок сталкиваются как с техническими, так и с технологическими трудностями.

Расчет поперечного сечения перекладины (ее ширина) производится с учетом того обстоятельства, что она должна равняться 1/2-1/3 высоты самого профиля. А если быть более конкретными, то она должна составлять 10, 12, 15, 20, 22, 25 см и выше (все величины должны быть кратными 5). В том случае если конструкция тонкостенная, тогда толщина балки (ее ребра) составляет 1/5 от высоты сечения.

Перекладины, плиты и перекрытия из монолитного железобетона армируют вязаной и сварной арматурой, при этом используя как продольный, так и поперечный каркас. Для вязаных каркасов можно использовать и отогнутую арматуру. При этом если продольный каркас в балках имеет доведение до опоры не меньше двух стержней, то ее диаметр должен быть 10 мм и выше.

Если перекрытия часторебристые, тогда применяют рабочий каркас 8 мм, причем один стержень доводят до опоры.

Когда возводят вязаный каркас, а высота балок при этом составляет 40 см, тогда вместо ненапрягаемой арматуры используют 12 мм стержни. Если хотят сконструировать продольную арматуру, применяют стержни меньшего диаметра.

Кильсон и перемычки

Схема монтажа плиты перекрытия.

Когда кильсон изготовлен из легкого бетона, а каркас с запасом прочности 500 МПа, тогда можно произвести расчет диаметра стержня для продольной арматуры, величина которого составит от 16-32 мм, что зависит от использованного класса бетона. В случае если для изготовления кильсона используют ячеистый бетон (класс В10 и ниже), тогда, произведя расчет диаметра продольной арматуры, можно выяснить, что его величина должна составить до 1,6 см.

Учтите, что для перемычек используют стержни двух диаметров, при этом не учитываются конструктивные балки и плиты перекрытия. В первом ряду, при вязаном каркасе и в углах перпендикулярного профиля, а также в тех местах, где происходит перегиб хомутов, размещают арматуру большего диаметра.

Основа продольного каркаса (ненапрягаемого) располагается по сечению перекладины равномерно в три ряда. В последнем (третьем) ряду должно располагаться два и более стержня. В последующем ряду стержни нельзя располагать в просветах. При этом расстояние между отдельными стержнями арматуры не должно быть меньше большего диаметра стержня, а также меньше 2,5 см (нижняя арматура) и 3 см (верхняя).

В плитах нижнюю арматуру необходимо распределить и разместить равномерно (произведя соответствующий расчет), но для этого понадобится уложить больше двух рядов, при этом ее высота должна составить около 5 см. Если места мало, тогда в плитах разрешается размещать стержни попарно, без зазоров. Между стержнями периодического сечения расстояние равно номинальному диаметру, при этом не учитывают ребра и выступы.

Непосредственные расчеты

Схема анкеровки плиты перекрытия.

Если нижний каркас должен доходить до последних перекладин, то его заводят за опору на длину базовой анкеровки, расчет которой производят по формуле:

lo, an = Rsp Asp/(Rbond us), гдеRsp – рассчитываемое сопротивление долевого сечения арматуры растяжению;Asp – номинальная площадь арматуры (установленной);Rbond – сопротивление сцепления каркаса и бетона;

Us – периметр по профилю арматуры (по номинальному диаметру).

После того как производят расчет анкеровки, необходимо разобраться, какие хомуты и стержни употребить и как их разместить.

Например, некоторые стержни, которые необходимо довести до опоры, обрывают в пролете, а стержни вязаной арматуры иногда отгибаются, причем тогда, когда их количество больше двух и если они двухсрезные. А когда это четырехсрезные хомуты, их число не должно превышать четырех и их тоже можно отгибать на опоры и на плиты.

Монолитные плиты перекрытия частично или полностью опираются по контуру (периметру), а иногда свободно опираются или имеют защемления на опорах. В конструкциях чаще всего используют консольные перекрытия, которые опираются на одну кромку, или такие плиты, которые опираются на углы (безбалочное перекрытие). Какие из них употребить, зависит от расчета, который производится довольно легко. Для него понадобится:

Плиты, как и балки, могут быть однопролетные – разрезные (шарнирные и с нешарнирным опиранием), неразрезные – консольные (многопролетные).

Процент армирования конструкций из железобетона

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

что такое альфа м в жбк. Смотреть фото что такое альфа м в жбк. Смотреть картинку что такое альфа м в жбк. Картинка про что такое альфа м в жбк. Фото что такое альфа м в жбк

Как рассчитать куб раствора для заливки полов

Проще и точнее рассчитать объем бетона в онлайн калькуляторе, но проверить или провести ручной расчёт можно по формуле:

Результат определяется умножением площади помещения на толщину слоя смеси на полу.

что такое альфа м в жбк. Смотреть фото что такое альфа м в жбк. Смотреть картинку что такое альфа м в жбк. Картинка про что такое альфа м в жбк. Фото что такое альфа м в жбк

Минимальный армирующий процент

Под предельно минимальным армирующим процентом принято понимать степень преобразования бетона в железобетон. Недостаточная величина этого параметра не дает права считать изделие усиленным до ЖБИ. Это будет простым упрочнением конструкционного типа. Площади сечения бетонного изделия учитываются в минимальном проценте усиления при использовании продольного армирования в обязательном порядке:

При расположении продольного усиления по периметру сечения, то есть равномерно, степень армирования должна равняться величинам, вдвое большим указанных для всех перечисленных выше случаев. Это правило аналогично и для усиления центрально-растянутых изделий.

ЧТО ТАКОЕ КОЭФФИЦИЕНТ АРМИРОВАНИЯ? — ЖБК 200 вопросов и ответов

ЧТО ТАКОЕ КОЭФФИЦИЕНТ АРМИРОВАНИЯ?

Это отношение площади сечения рабочей арматуры к рабочей площади бетонного сечения в долях или процентах (в последнем случае называют не коэффициентом, а процентом армирования). Для прямоугольного сечения  = As /bho,  = As /bho. При внецентренном сжатии минимальные значения  принимают в пределах от 0,05 до 0,25 % (чем больше гибкость, тем выше ), рекомендуемые значения лежат в пределах от 1 до 2 %, а максимальное  3 %.

НОРМАЛЬНЫЕ СЕЧЕНИЯ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ, РАБОТАЮЩИЕ ПО 2-МУ СЛУЧАЮ, ПРОЕКТИРОВАТЬ НЕ РЕКОМЕНДУЕТСЯ. А КАК БЫТЬ ПРИ ВНЕЦЕНТРЕН­НОМ СЖАТИИ?

При поперечном изгибе 2-й случай не рекомендуется потому, что растянутая арматура недоиспользует свою прочность. Избежать его можно, установив арматуру в сжатой зоне (см. вопрос 67). При сжатии, наоборот, чем больше высота сжатой зоны, тем эффективнее работает сечение, тем большую продольную силу оно способно воспринять (рис. 67), т.е. 2-й случай предпочтительнее. Однако конструктивные меры почти не в сос­тоянии повлиять на то, по какому случаю работает сечение на внецентренное сжатие,  это определяется величинами эксцентриситетов продольных сил от внешних нагрузок.

ЗАВИСИТ ЛИ НАЗНАЧЕНИЕ КЛАССА ПРОДОЛЬНОЙ АРМАТУРЫ ОТ КЛАССА БЕТОНА В СЖАТЫХ ЭЛЕМЕНТАХ?

Нормы проектирования рекомендуют в качестве сжатой арматуры применять сталь не выше класса А-III (см. вопрос 27), но при соответствующем обосновании допускают и сталь более высоких классов. При плавном росте нагрузки (например, на колонны нижних этажей в процессе возведения высотных зданий) деформативность бетона за счет ползучести увеличивается, а если еще использовать нисходящую ветвь диаграммы b b (рис.1), то предельная сжимаемость бетона становится столь высокой, что даже арматура класса Ат-VI при совместном деформировании может достичь напряжений sc = 02. Причем деформативность бетона тем больше, чем ниже его прочность. Отсюда и неожиданная, на первый взгляд, зависимость: чем ниже класс бетона, тем более высокого класса арматуру можно использовать в сжатых элементах.

ДЛЯ ЧЕГО ВО ВНЕЦЕНТРЕННО СЖАТЫХ ЭЛЕМЕНТАХ УСТАНАВЛИВАЮТ ПОПЕРЕЧНУЮ АРМАТУРУ?

У
Рис. 68станавливают, как правило, не для восприятия поперечной силы (обычно прочности самого бетона для этого вполне достаточно), а для того, чтобы обеспечить устойчивость продольной арматуры. Под влиянием поперечных деформаций бетона продольные стержни искривляются наружу (выпучиваются), отрывают защитный слой и теряют устойчивость задолго до исчерпания своей прочности (рис. 68). Поперечные стержни препятствуют этому процессу. Их ставят с шагом s не более 15ds (ds  наименьший диаметр продольных стержней). Минимальные ди­а­метры поперечных стержней назначают по условиям сварки: dsw  ds /3. Указанные требования, кстати, обязательны и для сжатой продольной арматуры изгибаемых элементов.

Поперечные стержни также сдерживают поперечные деформации бетона и, тем самым, несколько повышают его прочность на сжатие. Однако намного эффективнее в этом отношении косвенное армирование (см. вопрос 137).

1 36. КАК ОБЕСПЕЧИВАЕТСЯ УСТОЙЧИВОСТЬ ВНЕЦЕНТРЕННО СЖАТОГО ЭЛЕМЕНТА?

П ри внецентренном сжатии элемент искривляется, первоначальный эксцентриситет ео увеличивается, а вместе с ним растет и момент М от внешней нагрузки. Причем, чем больше доля постоянной и длительной нагрузки, тем больше деформации ползучести наиболее сжатых волокон, тем больше элемент искривляется, тем больше растет ео.
У Рис. 69читывают это коэффициентом  =1/(1 N/Ncr), на который умножают ео (рис. 69). В приведенном выражении N  продольная сила от внешней нагрузки, Ncr  критическая сила, определяемая по формулам Норм проектирования. Она зависит от расчетной длины элемента, размеров сечения, величины эксцентриситета, доли постоянной и длительной нагрузки и др. Коэффициент  можно не учитывать, если гибкость элемента = lo/i 14 (для прямоугольного сечения lo/h 4), где i  радиус инерции, h  высота сечения, lo расчетная длина. Таким образом, условие устойчивости после корректировки величины еосохраняет вид условия прочности.

Максимальный армирующий процент

При армировании нельзя укреплять бетонную конструкцию слишком большим количеством прутьев. Это приведет к существенному ухудшению технических показателей железобетонного материала. ГОСТ предлагает определенные нормативы максимального процента армирования.

Максимально допустимая величина усиления, вне зависимости от марки бетона и типа арматуры, не должна превышать пяти процентов. Речь идет о расположении в разрез сечения изделия с колоннами. Для других изделий допускается максимально четыре процента. При заливке арматурного каркаса, бетонный раствор должен проходить сквозь каждый отдельный конструкционный элемент.

Таблица пропорций для получения определенной марки

По таблице легко проводится определение марки бетона согласно массовым и мерным пропорциям компонентов для разных марок. Ниже представлена упрощённая таблица марок бетона:

СортаментПортландцементКомпонентыОбъём
ПортландцементПесокЩебень или гравийПортландцементПесокЩебень или гравий
M200M4001 кг2,7 кг4,7 кг10 л25 л42 л
M5001 кг3,6 кг5,7 кг10 л32 л49 л
M300M4001 кг1,8 кг3,6 кг10 л17 л32 л
M5001 кг2,5 кг4,4 кг10 л22 л37 л
M400M4001 кг1,2 кг28 кг10 л11 л24 л
M5001 кг1,5 кг3,5 кг10 л14 л28 л
M500M4001 кг1,2 кг2,6 кг10 л10 л22 л
M5001 кг1,5 кг2,8 кг10 л12 л25 л

Защитный слой бетона

Для защиты арматуры от коррозии, влаги и прочих неблагоприятных внешний воздействий, бетон должен полностью покрывать стальной каркас. Толщина бетонного пласта над металлическим скелетом в монолитных стенах более 10 см должна составлять максимально 1,5 см. Для плит толщиной до 10 см величина слоя составляет 1 см. Если речь идет о 25-сантиметровых ребрах, слой бетона должен достигать 2 см. При армировании балок до 25 см пласт цементного раствора равен 1,5 см, но для балок в фундаментах — 3 см. Для колонн стандартных размеров следует заливать бетон слоем более 2 см.

Что касается фундаментов, то для монолитных конструкций с прослойкой из цемента требуемая толщина слоя над арматурным каркасом составляет 3,5 см. При обустройстве сборных основ — 3 см. Монолитные базы без подушки требуют 7-сантиметровый слой бетона над скелетом из арматуры. При использовании толстых защитных слоев бетона рекомендуется проводить дополнительное усиление. Для этого используется стальная проволока, вязанная в виде сетки.

При дальнейшей обработке железобетонных конструкций алмазными кругами важно учитывать расположение каждого армирующего элемента и структуру его скелета. Это особенно касается процессов сверления отверстий в железобетоне и его резки. Такая обработка материалов может снизить потенциальную прочность изделия. Когда железобетон демонтируется полностью, учет перечисленных выше требований не производится.

коэффициент армирования железобетона μ — это… Что такое коэффициент армирования железобетона μ?

коэффициент армирования железобетона μ
3.10 коэффициент армирования железобетона μ: Отношение площади сечения арматуры к рабочей площади сечения бетона, выраженное в процентах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *