что такое альфа частица в физике
Альфа-частица
Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8–15 МэВ. При движении альфа-частицы в веществе она создаёт сильную ионизацию и в результате очень быстро теряет энергию. Энергии альфа-частиц, возникающих в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Однако проникновение альфа-активных радионуклидов внутрь тела, когда облучению подвергаются непосредственно ткани организма, весьма опасно для здоровья. Опасно для здоровья также внешнее облучение высокоэнергичными альфа-частицами, источником которых является ускоритель. Тяжелые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжелой частицы R измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (м, см, мкм) или длины, умноженной на плотность (г/см 2 ).
Энергия α-частиц, МэВ | 4 | 6 | 8 | 10 |
---|---|---|---|---|
Воздух, см | 2.5 | 4.6 | 7.4 | 10.6 |
Биологическая ткань, мкм | 31 | 56 | 96 | 130 |
алюминий, мкм | 16 | 30 | 48 | 69 |
Альфа-частицы образуются также в результате ядерных реакций. Например, в результате взаимодействия ядра лития-6 с дейтроном могут образоваться две альфа-частицы: 6 Li+ 2 H= 4 He+ 4 He. Альфа-частицы составляют существенную часть первичных космических лучей; большинство из них являются ускоренными ядрами гелия (из звёздных атмосфер и межзвёздного газа), некоторые возникли в результате ядерных реакций скалывания из более тяжёлых ядер космических лучей. Альфа-частицы высоких энергий могут быть получены с помощью ускорителей заряженных частиц.
Масса альфа-частицы составляет 6,644656·10 −27 кг, что эквивалентно энергии 3,72738 ГэВ.
Детектируются альфа-частицы с помощью кремниевых pin-диодов и соответствующей усилительной электроники, а также с помощью трековых детекторов.
Что такое Альфа частица?
Альфа частица представляет собой положительно заряженную частицу в ядерной физике, которая образуется при распаде ядер и имеет два протона и два нейтрона. Поток таких частиц принято называть альфа излучением.
Открытие в ядерной физике
Впервые о данном явлении упомянул ученый Э. Резерфорд еще вначале XX в., который в числе первых предположил наличие бета, гамма и, конечно же, альфа частиц, провел много опытов превращения ядер азота в ядра кислорода. Среди нескольких видов излучений, альфа излучение наиболее безопасное для живых существ.
Основные характеристики
При близком контакте с кожей человека она способна проникнуть на расстояние всего нескольких микрон. Это объясняется процессом ионизации, при котором поток отдает большую часть своей первоначальной энергии.
Взаимодействие альфа излучения с различными веществами
Частицы, образующие альфа излучение, являются довольно тяжелыми, вследствие чего у них небольшая скорость. Также, стоит отметить, что большое количество своей энергии они передают поглотителю при малой скорости, при этом образуется большое количество пар ионов. Для примера рассматривается частица со скоростью 20 мм/с которая способна образовать в воздухе приблизительно сто тысяч пар ионов.
Влияние на живые организмы
Альфа-распад атомного ядра
Внешняя проникающая способность данного излучения небольшая, может вполне задерживаться слоем бумаги. При малом внешнем воздействии возможно развитие злокачественных образований и нарушение правильного обмена веществ. Однако, при таком виде подвержены поражению слизистые участки тела и глаза, которые не поддаются дальнейшему излечению.
В процессе большого количества исследований, ученые пришли к выводу, что альфа частицы при попадании в живой организм с помощью пищи, воды и воздуха могут принести поистине катастрофические разрушения, поскольку они полностью сжигают живой организм изнутри. Особенно опасными признаны альфа частицы плутония 239, которые активно накапливаются в почках, печени, легких, селезенке и приводят к тяжелой форме лучевой болезни, затем и к скорому летальному исходу.
Научно-популярный фильм о Эрнесте Резерфорде
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Альфа-частица
В этой статье указаны элементы химических, физических реакций, или речь идёт о частице.
Описание: Положительно заряженная частица, образованная двумя протонами и двумя нейтронами; ядро атома гелия-4
Альфа-частица | |
Символ: | α, α2+, He2+ |
---|---|
Альфа-частица | |
Ядро изотопа: | Гелий-4 |
Химический элемент: | Гелий |
Состав: | 2 протона, 2 нейтрона |
Семья: | Бозон |
Массовое число (барионное число): | 4 |
Масса: | 3,727379240(82) ГэВ (около 6,644656⋅10−27 кг) |
Энергия связи: | 28,11 МэВ (7,03 МэВ на нуклон) |
Чётность: | + |
Спин: | 0 |
Изотопический спин: | 0 |
Гиперзаряд: | 4 |
А́льфа-части́ца (α-частица) — положительно заряженная частица, образованная двумя протонами и двумя нейтронами; ядро атома гелия-4 ( ). Альфа-частицы могут вызывать ядерные реакции; в первой искусственно вызванной ядерной реакции (Э. Резерфорд, 1919, превращение ядер азота в ядра кислорода) участвовали именно альфа-частицы. Поток альфа-частиц называют альфа-лучами или альфа-излучением.
Содержание
Образование [ ]
[1] Альфа-частицы возникают при альфа-распаде ядер, при ядерных реакциях и в результате полной ионизации атомов гелия-4. Например, в результате взаимодействия ядра лития-6 с дейтроном могут образоваться две альфа-частицы: 6 Li+ 2 H= 4 He+ 4 He. Альфа-частицы составляют существенную часть первичных космических лучей; большинство из них являются ускоренными ядрами гелия из звёздных атмосфер и межзвёздного газа, некоторые возникли в результате ядерных реакций скалывания из более тяжёлых ядер космических лучей. Альфа-частицы высоких энергий могут быть получены с помощью ускорителей заряженных частиц.
Свойства [ ]
[2] Масса альфа-частицы составляет 4,001506179125(62) атомной единицы массы (около 6,644656⋅10 −27 кг), что эквивалентно энергии 3,727379240(82) ГэВ. Спин и магнитный момент равны нулю. Энергия связи составляет 28,11 МэВ (7,03 МэВ на нуклон). Заряд альфа-частицы равен удвоенному элементарному заряду, или примерно 3,218·10 −19 Кл.
Проникающая способность [ ]
[3] Тяжёлые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжёлой частицы R измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (м, см, мкм), а также поверхностной плотности материала (или, что равнозначно, длины пробега, умноженной на плотность) (г/см 2 ). Выражение пробега в единицах длины имеет смысл для фиксированной плотности среды (например, часто в качестве среды выбирается сухой воздух при нормальных условиях). Физический смысл пробега в терминах поверхностной плотности — масса единицы площади слоя, достаточного для остановки частицы.
Детектирование [ ]
[4] Детектируются альфа-частицы с помощью сцинтилляционных детекторов, газоразрядных детекторов, кремниевых pin-диодов (поверхностно-барьерных детекторов, нечувствительных к бета- и гамма-излучению) и соответствующей усилительной электроники, а также с помощью трековых детекторов. Для детектирования альфа-частиц с энергиями, характерными для радиоактивного распада, необходимо обеспечить малую поверхностную плотность экрана, отделяющего чувствительный объём детектора от окружающей среды. Например, в газоразрядных детекторах может устанавливаться слюдяное окно с толщиной в несколько микрон, проницаемое для альфа-частиц. В полупроводниковых поверхностно-барьерных детекторах такой экран не нужен, рабочая область детектора может непосредственно контактировать с воздухом. При детектировании альфа-активных радионуклидов в жидкостях исследуемое вещество смешивается с жидким сцинтиллятором.
В настоящее время наиболее распространены кремниевые поверхностно-барьерные детекторы альфа-частиц, в которых на поверхности полупроводникового кристалла с проводимостью p-типа создаётся тонкий слой с проводимостью n-типа путём диффузионного введения донорной примеси (например, фосфора). Приложение обратного смещения к p-n-переходу обедняет чувствительную область детектора носителями заряда. Попадание в эту область альфа-частицы, ионизирующей вещество, вызывает рождение нескольких миллионов электронно-дырочных пар, которые вызывают регистрируемый импульс тока с амплитудой, пропорциональной количеству родившихся пар и, соответственно, кинетической энергии поглощённой альфа-частицы. Поскольку обеднённая область имеет очень малую толщину, детектор чувствителен лишь к частицам с высокой плотностью ионизации (альфа-частицы, протоны, осколки деления, тяжёлые ионы) и малочувствителен к бета- и гамма-излучению.
Воздействие на электронику [ ]
[5] Вышеописанный механизм рождения электронно-дырочных пар альфа-частицей в полупроводниках может вызвать несанкционированное переключение полупроводникового триггера при попадании альфа-частицы с достаточной энергией на кремниевый чип. При этом единичный бит в памяти заменяется нулевым (или наоборот). Для уменьшения количества таких ошибок материалы, используемые в производстве микросхем, должны обладать низкой собственной альфа-активностью.
Воздействие на человека [ ]
[6] Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8—15 МэВ. При движении альфа-частицы в веществе, она создаёт сильную ионизацию окружающих атомов, и в результате этого очень быстро теряет энергию. Энергии альфа-частиц, возникающих в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Внешнее альфа-облучение опасно для здоровья только в случае высокоэнергичных альфа-частиц (с энергией выше десятков МэВ), источником которых является ускоритель. Однако проникновение альфа-активных радионуклидов внутрь тела, когда облучению подвергаются непосредственно живые ткани организма, весьма опасно для здоровья, поскольку большая плотность ионизации вдоль трека частицы сильно повреждает биомолекулы. Считается, что при равном энерговыделении (поглощённой дозе) эквивалентная доза, набранная при внутреннем облучении альфа-частицами с энергиями, характерными для радиоактивного распада, в 20 раз выше, чем при облучении гамма- и рентгеновскими квантами. Однако линейная передача энергии высокоэнергичных альфа-частиц (с энергиями 200 МэВ и выше) значительно меньше, поэтому их относительная биологическая эффективность сравнима с таковой для гамма-квантов и бета-частиц.
Таким образом, опасность для человека при внешнем облучении могут представлять α-частицы с энергиями 10 МэВ и выше, достаточными для преодоления омертвевшего рогового слоя кожного покрова. В то же время большинство исследовательских ускорителей α-частиц работает на энергиях ниже 3 МэВ.
Гораздо бо́льшую опасность для человека представляют α-частицы, возникающие при альфа-распаде радионуклидов, попавших внутрь организма (в частности, через дыхательные пути или пищеварительный тракт). Достаточно микроскопического количества α-радиоактивного вещества (например полония-210), чтобы вызвать у пострадавшего острую лучевую болезнь, зачастую с летальным исходом.
Альфа-частицы: открытие, характеристики, применение
Содержание:
В альфа-частицы (или α-частицы) являются ядрами ионизированных атомов гелия, которые поэтому потеряли свои электроны. Ядра гелия состоят из двух протонов и двух нейтронов. Таким образом, эти частицы имеют положительный электрический заряд, величина которого вдвое превышает заряд электрона, а их атомная масса равна 4 атомным единицам массы.
Открытие
В течение 1899 и 1900 годов физики Эрнест Резерфорд (работавший в Университете Макгилла в Монреале, Канада) и Пол Виллар (работавший в Париже) различали три типа заявок, названных самим Резерфордом: альфа, бета и гамма.
Различия проводились на основании их способности проникать в предметы и их отклонения под действием магнитного поля. Благодаря этим свойствам Резерфорд определил альфа-лучи как имеющие самую низкую проникающую способность среди обычных объектов.
Таким образом, работа Резерфорда включала измерения отношения массы альфа-частицы к ее заряду. Эти измерения привели его к предположению, что альфа-частицы были двухзарядными ионами гелия.
Наконец, в 1907 году Эрнесту Резерфорду и Томасу Ройдсу удалось показать, что гипотеза, установленная Резерфордом, верна, тем самым показав, что альфа-частицы были дважды ионизированными ионами гелия.
характеристики
Некоторые из основных характеристик альфа-частиц следующие:
Атомная масса
Загрузить
Скорость
Порядка 1,5 · 10 7 м / с и 3 10 7 РС.
Ионизация
Они обладают высокой способностью ионизировать газы, превращая их в токопроводящие газы.
Кинетическая энергия
Его кинетическая энергия очень высока из-за большой массы и скорости.
Проницаемость
У них низкая проникающая способность. В атмосфере они быстро теряют скорость при взаимодействии с различными молекулами из-за их большой массы и электрического заряда.
Альфа-распад
В целом процесс выглядит следующим образом:
Альфа-распад обычно происходит в более тяжелых нуклидах. Теоретически это может происходить только в ядрах несколько тяжелее никеля, в которых общая энергия связи на нуклон уже не минимальна.
Поскольку альфа-частицы относительно тяжелые и положительно заряжены, их длина свободного пробега очень мала, поэтому они быстро теряют кинетическую энергию на небольшом расстоянии от источника излучения.
Альфа-распад от ядер урана
В своей естественной форме уран присутствует в трех изотопах: уран-234 (0,01%), уран-235 (0,71%) и уран-238 (99,28%). Процесс альфа-распада наиболее распространенного изотопа урана выглядит следующим образом:
238 92 U → 234 90Чт + 4 2у меня есть
Гелий
Весь гелий, который в настоящее время существует на Земле, происходит из процессов альфа-распада различных радиоактивных элементов.
По этой причине его обычно находят в месторождениях полезных ископаемых, богатых ураном или торием. Точно так же это также связано с скважинами для добычи природного газа.
Токсичность и опасность альфа-частиц для здоровья
Как правило, внешнее альфа-излучение не представляет опасности для здоровья, поскольку альфа-частицы могут преодолевать расстояния всего в несколько сантиметров.
Таким образом, альфа-частицы поглощаются газами, присутствующими всего в нескольких сантиметрах воздуха, или тонким внешним слоем омертвевшей кожи человека, предотвращая, таким образом, опасность для здоровья человека.
Однако альфа-частицы очень опасны для здоровья при проглатывании или вдыхании.
Это потому, что, хотя они и обладают небольшой проникающей способностью, их воздействие очень велико, поскольку они являются самыми тяжелыми атомными частицами, испускаемыми радиоактивным источником.
Приложения
Альфа-частицы имеют разные применения. Вот некоторые из наиболее важных:
— Устранение статического электричества в промышленных приложениях.
— Использование в детекторах дыма.
— Источник топлива для спутников и космических аппаратов.
— Источник питания для кардиостимуляторов.
— Источник питания для выносных сенсорных станций.
— Источник питания для сейсмических и океанографических приборов.
Как можно видеть, очень часто альфа-частицы используются в качестве источника энергии для различных приложений.
Во-первых, альфа-частицы образуются за счет ионизации (то есть отделения электронов от атомов гелия). Позже эти альфа-частицы ускоряются до высоких энергий.
Что такое альфа-распад?
Британский физик Эрнест Резерфорд впервые описал альфа-частицу в 1899 году. Он также различал и называл альфа-и бета-излучение. Однако только в 1928 году Джордж Гамов решил теорию альфа-распада с помощью квантового туннелирования.
В этой обзорной статье мы объяснили, почему происходит альфа-распад, что на самом деле происходит в этом процессе, каковы его первичные источники и имеет ли он какие-либо неблагоприятные последствия. Но давайте начнем с основ.
Что такое альфа-распад?
Поскольку альфа-частица содержит массу в четыре единицы и два положительных заряда, ее выброс из ядра приводит к образованию дочернего ядра с массой на четыре единицы меньше и атомным номером на две единицы меньше (чем у ее родительского ядра).
Уравнение
В ядерной физике формула или уравнение альфа-распада могут быть записаны как:
В ядерном уравнении альфа-частица обычно показывается без учета заряда (однако, она содержит заряд +2e).
Альфа-распад происходит только в тяжелых нуклидах. Теоретические расчеты показывают, что этот тип распада может происходить в ядрах, немного более тяжелых, чем никель (атомное число 28). В реальном мире, однако, он был обнаружен только в нуклидах, значительно более тяжелых, чем никель.
Теллур (атомное число 52) является самым легким элементом, чьи изотопы (от 104 Те до 109 Те), как известно, претерпевают альфа-распад. Однако есть некоторые исключительные случаи, такие как изотоп бериллия ( 8 Be), который распадается на две альфа-частицы.
Примеры
Наиболее популярным примером такого рода ядерной трансмутации является распад урана. Уран-238 (самый распространенный изотоп урана, встречающийся в природе) распадается с образованием тория-234.
Как видите, сумма индексов (масс и атомных номеров) остается одинаковой с каждой стороны уравнения.
Торий также становится радием
Нептуний превращается в протактиний
Платина становится Осмием
Гадолиний становится самарием
Итак, три вещи происходят в альфа-распаде:
1. Тяжелое (родительское) ядро распадается на две части.
2. Альфа-частица выбрасывается в пространство.
3. У оставшегося (дочернего) ядра его массовое число уменьшено на четыре, а его атомное число уменьшено на два.
Почему происходит альфа-распад?
Однако, когда общая разрушительная электромагнитная сила преодолевает ядерную, атомное ядро распадается на две или более частей. Исследования показывают, что ядро, содержащее более 209 нуклонов, настолько велико, что электромагнитное отталкивание между его протонами часто побеждает притягивающую ядерную силу, удерживающую его.
Это происходит потому, что сила ядерной силы быстро падает за пределы одного фемтометра, в то время как электромагнитная сила сохраняет такую же силу на больших расстояниях.
Классическая физика не позволяет альфа-частицам избегать сильных ядерных сил внутри ядра. Квантовая механика, однако, позволяет альфа-частицам убегать через квантовое туннелирование, даже если они не обладают достаточной энергией для преодоления ядерной силы.
Основной источник альфа-распада
Альфа-частицы в основном испускаются более тяжелыми атомами (атомный номер> 106), такими как торий, уран, радий и актиний. Фактически, почти 99 процентов гелия, генерируемого на Земле, происходит от альфа-распада подземных минералов, состоящих из тория или урана.
Некоторые искусственные изотопы испускают альфа-частицы: например, радиоизотопы кюрия, америция и плутония. Они создаются в ядерном реакторе путем поглощения нейтронов различными изотопами урана.
Высокоэнергетические ядра гелия также могут быть искусственно созданы ускорителями частиц, такими как синхротрон и циклотроны. Однако их обычно не называют альфа-частицами.
Это опасно?
Как правило, выброшенные альфа-частицы имеют кинетическую энергию 5 Мегаэлектронвольт, и они движутся со скоростью почти 5 процентов скорости света. Поскольку они несут + 2e электрический заряд и имеют большую массу, они могут легко взаимодействовать с другими атомами и терять свою энергию.
Хотя альфа-распад является сильно ионизирующим излучением частиц, он имеет низкую глубину проникновения. Движение вперед альфа-частиц может быть остановлено куском бумаги, толстым слоем воздуха или внешними слоями кожи человека.
Уровень проникновения альфа, бета и гамма частиц
Они не опасны для жизни, если источник не вдыхается, не проглатывается и не вводится. Если радиоактивное вещество, разлагающее альфа-частицу, попадает в организм, оно может быть в 20 раз опаснее гамма-излучения. Большие дозы могут привести к радиационному отравлению. Полоний-210, сильный альфа-излучатель, играет ключевую роль при раке мочевого пузыря и легких.
Хотя альфа-частицы не могут проникнуть сквозь кожу человека, они могут повредить роговицу. Некоторые альфа-источники также сопровождаются бета-излучающими ядрами, которые, в свою очередь, сопровождаются испусканием гамма-фотонов.
Радон является одним из крупнейших источников дозы облучения населения. При вдыхании некоторые его частицы прикрепляются к внутренней оболочке легкого и в конечном итоге повреждают клетки в ткани легкого.
Применения
Принцип работы детектора дыма
Радиоактивные источники альфа-частиц используются в детекторах дыма. Америций-241, например, выделяет альфа-частицы, которые ионизируют воздух внутри детектора. Когда дым попадает в оборудование, он поглощает излучение, вызывая тревогу.
Альфа-частицы из полония-210 используются для устранения статического электричества из оборудования. Альфа-частицы притягивают свободные электроны, уменьшая потенциал местного статического электричества. Этот метод широко применяется на бумажных фабриках.
Рентгеновская спектроскопия альфа-частиц используется для определения состава пород и грунтов. НАСА использовало этот процесс на Марсовом разведывательном ровере для сбора криволинейных данных, данных о погоде и активности воды на Марсе.
Гранула из 238 PuO 2, используемая в РТГ для космических миссий. Пеллета светится красным цветом из-за тепла, генерируемого альфа-распадом | Изображение предоставлено: Викимедиа
Космические агентства используют радиоизотопные термоэлектрические генераторы (РТГ) для питания различных космических аппаратов и спутников, включая «Вояджер 1/2» и «Пионер 10/11». Эти генераторы используют плутоний-238 для работы в качестве долговременной батареи. Плутоний-238 испускает альфа-излучение, в результате чего образуется тепло, которое преобразуется в электричество.
В настоящее время ученые работают над тем, чтобы использовать разрушительные источники альфа-излучения для лечения рака. Они пытаются направить небольшое количество альфа-частиц в опухолевые клетки. Поскольку эти частицы имеют небольшую глубину проникновения, они могут остановить рост опухоли или, возможно, уничтожить ее, не затрагивая окружающие здоровые ткани. Этот вид лечения известен как негерметичная лучевая терапия.