что такое адрес озу пзу
Адресное пространство микропроцессорного устройства
При подключении различных устройств к системной шине возникает вопрос — как различать эти устройства между собой? C этой целью используют индивидуальный адрес для каждого устройства, подключенного к системной шине микропроцессора. Достаточно часто устройства занимают целый диапазон адресов. Так как обращение производится к каждой ячейке памяти устройства индивидуально, то возникает понятие адресного пространства, занимаемого каждым устройством и адресного пространства микропроцессорного устройства в целом.
Адресное пространствомикропроцессорного устройства изображается графически прямоугольником, одна из сторон которого соответствует разрядам адресуемой ячейки этого микропроцессора, а другая сторона — всему диапазону доступных адресов для этого же микропроцессора. Обычно в качестве минимально адресуемого элемента адресного пространства, доступного для микропроцессора, выбирается 8‑разрядная ячейка (байт).
Диапазон доступных адресов микропроцессораопределяется разрядностью шины адреса, которая обычно совпадает с разрядностью счетчика команд и разрядностью указателя данных. При этом минимальный номер ячейки памяти (адрес) будет равен нулю, а максимальный — определяется из формулы:
где N — это количество разрядов шины адреса микропроцессора.
Для 16-разрядной шины адреса — это будет число 65535 (64K). Адресное пространство микропроцессора с 16-разрядной шиной адреса приведено на рис. 19.4. Это наиболее распространенный размер адресного пространства современных микроконтроллеров. Рис. 19.4 соответствует адресному пространству памяти микропроцессора, входящего в состав системы, структурная схема которой приведена на рис. 19.3.
десятичный номер ячейки | двоичный номер ячейки |
64K | |
… | |
1К | |
… | |
номер бита в ячейке |
Рис. 19.4. Адресное пространство микропроцессора с 16-разрядной шиной адреса
На этом рисунке слева приведены адреса ячеек памяти в десятичном виде, справа — их двоичный эквивалент. Знание двоичного эквивалента адреса позволяет в ряде случаев упростить принципиальную схему микропроцессорного устройства. Для этой же цели в микропроцессорных системах часто пользуются числами, кратными степени числа 2. Например, широко используется число, ближайшее к числу 1000 — килобайт, равный 1024 байтам, которое является десятой степенью числа 2. Это число обозначается как 1К. Для микропроцессорных систем, более сложных по сравнению с системой, использованной нами в качестве примера микропроцессорной системы, применяются числа, близкие к миллиону — мегабайт, равный 1024 килобайтам, и к миллиарду — гигабайт, равный 1024 мегабайтам. Мегабайт обозначается как 1М, а гигабайт обозначается как 1Г.
Различные адреса для ячеек памяти нам потребовались для того, чтобы отличать различные устройства, подключенные к микропроцессору, поэтому при построении микропроцессорной системы кроме адресного пространства нам требуется знать конкретные адреса (или группы адресов) устройств подключенных к микропроцессору через системную шину микропроцессорной системы.
Распределением памяти микропроцессорной системыназывают разбиение адресного пространства микропроцессора на несколько областей, каждая из которых выделена для размещения ячеек какого-либо определенного элемента этой системы: ОЗУ, ПЗУ или внешних устройств. Часто его изображают в форме рисунка. Адресное пространство, соответствующее структурной схеме микропроцессорной системы, приведенной на рис. 19.3, изображено на рис. 19.5.
64K | Порт ввода-вывода |
Неиспользуемое | |
адресное пространство | Xxxxxxxxxxxxxxxx |
16K | |
ОЗУ | 001xxxxxxxxxxxxx |
8K | |
Неиспользуемое | |
адресное пространство | 000xxxxxxxxxxxxx |
2K | |
ПЗУ | 00000xxxxxxxxxxx |
Рис. 19.5. Распределение памяти микропроцессора с 16-разрядной шиной адреса
Обычно адресное пространствораспределяют одновременно с проектированием структурной схемы устройства и созданием дешифраторов адреса для каждого подключаемого к системной шине устройства. Это позволяет упростить его принципиальную схему. Начнем распределение адресного пространства микропроцессорной системы с выделения диапазона адресов для микросхемы ПЗУ.
Микропроцессоры после включения питания и выполнения процедуры сброса всегда начинают выполнение программы с определенного адреса, чаще всего нулевого. Однако есть и исключения. Например, процессоры, на основе которых строятся универсальные компьютеры IBM PC или Macintosh стартуют не с нулевого адреса. Исполняемая программа или ее загрузчик должны храниться в памяти микропроцессорной системы, которая не стирается при выключении питания, то есть в ПЗУ. Таким образом, адрес, записываемый в счетчик команд процессора после выполнения его сброса, обязательно должен попадать в диапазон адресов, выделенных для размещения ПЗУ.
Выберем для построения микропроцессорной системы микросхему ПЗУ объемом 2 Кбайт, как это показано на рис. 19.3. При построении операционного блока мы договорились, что микропроцессор после снятия сигнала сброса RESET начинает работу с нулевого адреса, поэтому для ПЗУ в адресном пространстве выделим номера ячеек, начиная с нулевого адреса. Для того чтобы нулевая ячейка ПЗУ оказалась расположенной по нулевому адресу адресного пространства микропроцессора, старшие разряды шины адреса (5 старших разрядов, начиная с разряда номер 11) должны быть равны 0.
Так как в микросхеме ПЗУ уже имеются одиннадцать адресных выводов, то при создании схемы необходимо дополнительно декодировать старшие пять разрядов адреса (определить, чтобы они были равны 0). Это выполняется при помощи внешнего дешифратора адреса, который в данном случае вырождается в 5-входовую схему «ИЛИ». При использовании дешифратора адреса, обращение микропроцессора за пределы нижней области 2 Кбайт не приведет к чтению ячеек ПЗУ, так как в этом случае на входе выбора кристалла CS уровень напряжения останется высоким (неактивным).
Теперь подключим к системной шине микропроцессорной системы оперативное запоминающее устройство. Для примера выберем микросхему объемом 8 Кбайт. Выбор любой из ячеек памяти этой микросхемы возможен при помощи 13‑разрядного адреса, поэтому необходимо дополнительно декодировать сигналы трех старших линий 16-разрядной шины адреса. Так как начальные ячейки памяти адресного пространства уже заняты ПЗУ, то их использовать нельзя. Им соответствует значение старших разрядов адресной шины 000. Выберем для адресации ОЗУ комбинацию сигналов 001 и используем уже известные нам принципы построения схемы по произвольной таблице истинности. Дешифратор адреса выродится в данном случае в 3-входовую схему «И‑НЕ» с двумя инверторами на входе. Схема дешифратора адреса ОЗУ приведена на рис. 19.3. Этот дешифратор адреса обеспечивает нулевой уровень сигнала на входе CS микросхемы ОЗУ только при комбинации старших битов адреса 001.
Обратите внимание: так как объем выбранной нами микросхемы ПЗУ меньше объема микросхемы ОЗУ, то между областями адресов микросхем ПЗУ и ОЗУ образовалось пустое пространство неиспользуемых адресов памяти микропроцессорной системы. Его можно было бы избежать при усложнении схемы дешифратора адреса ОЗУ или применения дополнительного двоичного сумматора, однако стоит ли это делать? Если микропроцессорная система не будет усложняться, то зачем усложнять схему дешифратора адреса, а если будет, то, скорее всего, будет увеличен объем постоянного запоминающего устройства и тогда этот резерв адресов будет просто полезен.
Так как все микропроцессоры предназначены для обработки данных, поступающих извне, то в любой микропроцессорной системе должны присутствовать порты ввода-вывода. Как устроены порты ввода-вывода, и как их применять при создании цифровых устройств, мы рассмотрим в последующих главах. Сейчас же для того, чтобы закончить построение адресного пространства (да и структурной схемы микропроцессорной системы), будем считать, что порт ввода-вывода отображается в адресное пространство микропроцессорного устройства как одиночная ячейка памяти, поэтому можно выбрать практически любой свободный адрес.
Проще всего построить дешифратор самого старшего адреса 65535. Он соответствует шестнадцатеричному представлению 0FFFFh. В этом случае он превращается в обычную 16‑входовую схему «16И-НЕ», поэтому и выберем данный адрес для размещения порта ввода-вывода. Именно такой дешифратор и изображен на структурной схеме, приведенной на рис. 19.3.
Итак, обратите внимание, что выбор распределения ячеек памяти в адресном пространстве микропроцессора существенно влияет на структурную (а значит, и принципиальную) схему микропроцессорной системы. Мы могли бы адреса ячеек ОЗУ расположить непосредственно после адресов ячеек постоянного запоминающего устройства, однако для этого пришлось бы преобразовывать адрес, формируемый микропроцессором в адрес ячейки ОЗУ при помощи сумматора. Это, кроме усложнения схемы устройства, приводит к снижению быстродействия микропроцессорной системы в целом.
То же самое можно сказать и по выбору адресов для размещения внешних устройств. Чем больший номер будет иметь этот адрес, тем большее количество единиц будет присутствовать в двоичном представлении этого числа, и тем проще будет реализовываться дешифратор адреса соответствующего устройства.
Ну а теперь рассмотрим подробнее особенности реализации цифровых устройств с использованием микропроцессоров.
Что такое ПЗУ и ОЗУ в компьютере или телефоне?
Современные компьютеры – это сложнейшие электронные устройства, выполняющие миллионы простейших операций в секунду.
Благодаря этому мы можем наслаждаться сложными игровыми мирами, смотреть фильмы в высоком качестве изображения, бродить в интернете и т.д. Мало чем уступают компьютерам и телефоны, которые тоже сегодня обязательно оснащаются всеми необходимыми атрибутами вычислительного устройства – высокопроизводительным процессором, оперативной и постоянной памятью, сокращенно – ОЗУ и ПЗУ.
Что такое ОЗУ?
Необходимость в оперативном запоминающем устройстве (сокращенно – ОЗУ или RAM) возникла уже у самых первых вычислительных машин, созданных в далекие 40-е годы. Буферная память, как ее иногда называют другими словами, используется при выполнении любого процесса.
Фактически, все операции, выполняемые процессором, используют ОЗУ для сохранения промежуточных результатов. Данные, хранимые в ОЗУ, изменяются очень быстро и никогда не сохраняются после выключения компьютера или телефона.
Объем оперативной памяти выбирается в соответствии с быстродействием процессора. От обширной оперативной памяти будет мало толку в сочетании с маломощным процессором. Соответственно, самый производительный процессор не сможет эффективно работать в комплекте с небольшим по объему памяти ОЗУ.
Впрочем, мощному процессору можно помочь, «отщипнув» кусочек памяти от жесткого диска. Для телефона этот способ не годится, а в стационарном компьютере опытный пользователь вполне может осуществить «разгон», увеличив скорость его процессов.
Говоря простыми словами, ОЗУ – это устройство, используемое компьютером или телефоном как черновик. Туда записываются промежуточные результаты, которые быстро стираются и заменяются новыми, тоже промежуточными. Когда компьютер выключают, «черновик» уничтожается, так как хранить данные, записанные в его памяти, совершенно не обязательно.
Что такое ПЗУ?
Намного более сложными являются постоянные запоминающие устройства (сокращенно – ПЗУ или ROM), которые обладают одним очень важным свойством – сохраняют записанную информацию даже при полном выключении электропитания. В стационарном компьютере используется несколько видов ПЗУ:
– интегральная микросхема, на которой записан БИОС, размещенная на материнской плате и питающаяся от собственной батарейки-«таблетки»;
– жесткий диск, или винчестер, внутреннего или внешнего размещения;
– съемные карты памяти (флеш-память, microSD карты и т.д.);
– лазерные диски CD, DVD и их накопители;
– флоппи-диски (сейчас уже полностью вышли из употребления).
Все эти устройства можно объединить одним названием – постоянные запоминающие устройства. Но, как правило, когда говорят о ПЗУ компьютера или телефона, имеют в виду только микросхему, в которой «прошит» базовый комплекс программного обеспечения.
Для того, чтобы изменить записанную в ней информацию, нужно специальное и очень сложное оборудование, обычный пользователь ни при каких условиях не сможет это сделать.
Информация, сохраняемая другими типами ПЗУ, делится на несколько разделов по степени важности для устройства:
– раздел для операционной системы;
– раздел для программ и приложений;
– раздел для остальной информации.
Операционную систему компьютера, как и мобильного телефона, при желании можно заменить или внести в нее исправления. Однако делать это нужно с осторожностью и только в том случае, когда вы полностью понимаете, к чему приведут эти изменения.
Если работа ОС будет нарушена, придется обращаться к специалисту для ее настройки, а может, и переустановки. Остальные разделы памяти могут без особых проблем стираться и перезаписываться, полностью или частично – на работоспособности устройства это не скажется.
Итак, постоянное запоминающее устройство компьютера – это его «память», информация в которой сохраняется, даже если питание будет выключено. ПЗУ можно назвать чистовой тетрадью компьютера, куда записываются только результаты процессов для постоянного хранения.
Глава 1. Компьютер. Программное и аппаратное обеспечение
Системный блок компьютера. Оперативная память: тип, частота, и информационная емкость
Внутренняя память
Постоянная память (ПЗУ, ROM ) — неизменяемая память, поставляемая вместе с компьютером, в которой хранятся программы, тестирующие компьютер сразу после его включения и загружающие операционную систему.
Кэш-память — (англ. cache), или сверхоперативная память. Кэш-память реализуется на микросхемах статической памяти SRAM.
Специальная память — к устройствам специальной памяти относятся перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.
Внешняя память
Предназначена для переноса и хранения информации. Это могут быть дискеты, лазерные диски, магнитооптические диски, винчестеры и другие устройства, выполняющие данные функции.
Внутренняя (основная) память
В состав внутренней памяти входят оперативная память, постоянная память, кэш-память и специальная память.
Оперативная память
Оперативная память (ОЗУ, англ. RAM, Random Access Memory — память с произвольным доступом) — это оперативное (быстрое) запоминающее устройство не очень большого объёма, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных, обрабатываемых этими программами.
Оперативная память используется только для временного хранения данных и программ, так как, когда машина выключается, все, что находилось в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой — это означает, что каждый байт памяти имеет свой индивидуальный адрес.
Как работает ОЗУ?
Когда компьютер отправляет данные на хранение в оперативную память, он запоминает адреса, в которые эти данные помещены. Обращаясь к информационной ячейке, компьютер находит в ней байт данных.
Адресная ячейка оперативной памяти хранит один байт, а поскольку байт состоит из 8 битов, то в ней есть 8 битовых ячеек. Каждая такая ячейка микросхемы оперативной памяти хранит электрический заряд.
Заряды в ячейках не могут храниться долго — они «стекают». За несколько десятых долей секунды заряд в ячейки уменьшается до утраты данных. Чтобы такого не случилось, компьютер «повторяет» информацию в каждой ячейке (подзаряжает). Это называется регенерацией оперативной памяти. Это происходит так быстро, что мы не замечаем этого, но стоит на мгновенье отключить питание, стирается вся оперативная память и происходит «сброс» компьютера.
Объем ОЗУ обычно составляет от 32 до 1024 Мбайт. В настоящее время появились ОЗУ до 2 Гбайт. Для несложных административных задач бывает достаточно и 32 Мбайт ОЗУ, но сложные задачи компьютерного дизайна могут потребовать от 512 Мбайт до 2 Гбайт ОЗУ.
Обычно ОЗУ исполняется на интегральных микросхемах памяти SDRAM (синхронное динамическое ОЗУ). Каждый информационный бит в SDRAM запоминается в виде электрического заряда крохотного конденсатора, образованного в структуре полупроводникового кристалла. Из-за токов утечки такие конденсаторы быстро разряжаются, и их периодически (примерно каждые 2 миллисекунды) подзаряжают специальные устройства. Этот процесс, как уже было сказано, называется регенерацией памяти (Refresh Memory). Микросхемы SDRAM имеют ёмкость 16 — 256 Мбит и более. Они устанавливаются в корпуса и собираются в модули памяти.
Большинство современных компьютеров комплектуются модулями типа DIMM (Dual-In-line Memory Module — модуль памяти с двухрядным расположением микросхем). В компьютерных системах на самых современных процессорах используются высокоскоростные модули Rambus DRAM (RIMM) и DDR DRAM.
DIMM
RIMM
В персональных компьютерах объем адресуемой памяти и величина фактически установленной оперативной памяти практически всегда различаются. Хотя объем адресуемой памяти может достигать 64 Гбайт, величина фактически установленной оперативной памяти может быть значительно меньше, например, «всего» 64 Мбайт.
Оперативная память — временная, т. е. данные в ней хранятся только до выключения ПК. Для долговременного хранения информации служат дискеты, винчестеры, компакт-диски и т. п. Конструктивно элементы памяти выполнены в виде модулей, так что при желании можно сравнительно просто заменить их или установить дополнительные и тем самым изменить объем общей оперативной памяти компьютера.
Кэш-память
Кэш (англ. cache), или сверхоперативная память — очень быстрое ЗУ небольшого объёма, которое используется при обмене данными между микропроцессором и оперативной памятью для компенсации разницы в скорости обработки информации процессором и несколько менее быстродействующей оперативной памятью.
Кэш-памятью управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как «попадания», так и «промахи». В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.
Кэш-память реализуется на микросхемах статической памяти SRAM (Static RAM), более быстродействующих, дорогих и малоёмких, чем DRAM (SDRAM). Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня размером 8, 16, 32 или 64 Кбайт. Кроме того, на системной плате компьютера может быть установлен кэш второго уровня ёмкостью 256, 512, 1024 Кбайт и выше.
Постоянная память (ПЗУ)
Существует два типа памяти — память с произвольным доступом (RAM или random access memory). Это оперативная память. Ее мы только что рассмотрели, но помимо нее существует другой вид внутренней памяти — память, доступная только на чтение (ROM или read only memory). Это и есть постоянная память, или как по-другому ее называют постоянное запоминающее устройство (ПЗУ).
Память, доступная только на чтение используется для постоянного размещения определенных программ (например, программы начальной загрузки ЭВМ). В процессе работы компьютера содержимое этой памяти не может быть изменено.
Постоянная память (ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом «зашивается» в устройстве при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.
ПЗУ является энергонезависимым.
В ПЗУ находятся:
Отличия ОЗУ и ПЗУ :
Специальная постоянная память
Перепрограммируемая постоянная память (Flash Memory) — энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты.
К устройствам специальной памяти относятся перепрограммируемая постоянная память (Flash Memory), память CMOS RAM, питаемая от батарейки, видеопамять и некоторые другие виды памяти.
Перепрограммируемая постоянная память (Flash Memory) — энергонезависимая память, допускающая многократную перезапись своего содержимого с дискеты
Важнейшая микросхема постоянной или Flash-памяти — модуль BIOS. Роль BIOS двоякая: с одной стороны это неотъемлемый элемент аппаратуры, а с другой стороны — важный модуль любой операционной системы.
BIOS (Basic Input/Output System — базовая система ввода-вывода) — совокупность программ, предназначенных для автоматического тестирования устройств после включения питания компьютера и загрузки операционной системы в оперативную память
Разновидность постоянного ЗУ — CMOS RAM.
CMOS RAM — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки. Используется для хранения информации о конфигурации и составе оборудования компьютера, а также о режимах его работы.
Рис 2. Микросхемы BIOS и CMOS
Содержимое CMOS изменяется специальной программой Setup, находящейся в BIOS (англ. Set-up — устанавливать, читается «сетап»).
К устройствам специальной памяти относят видеопамять. Видеопамять используется для хранения графической информации. Видеопамять содержит данные, соответствующие текущему изображению на экране.
Видеопамять (VRAM) — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.
Объем VRAM обычно составляет от 16 до 512 Мбайт.
Что такое ОЗУ и как определить тип памяти вашего компьютера
Очень много пользователей компьютера часто задаются вопросом — что такое ОЗУ. Чтобы помочь нашим читателям подробно разобраться с ОЗУ, мы подготовили материал, в котором подробно рассмотрим, где его можно использовать и какие его типы сейчас используются. Также мы рассмотрим немного теории, после чего вы поймете, что собой представляет современная память.
Немного теории
Аббревиатура ОЗУ расшифровывается как — оперативное запоминающее устройство. По сути, это оперативная память, которая в основном используется в ваших компьютерах. Принцип работы любого типа ОЗУ построен на хранении информации в специальных электронных ячейках. Каждая из ячеек имеет размер в 1 байт, то есть в ней можно хранить восемь бит информации. К каждой электронной ячейке прикрепляется специальный адрес. Этот адрес нужен для того, чтобы можно было обращаться к определенной электронной ячейке, считывать и записывать ее содержимое.
Также считывание и запись в электронную ячейку должна осуществляться в любой момент времени. В английском варианте ОЗУ — это RAM. Если мы расшифруем аббревиатуру RAM (Random Access Memory) — память произвольного доступа, то становится ясно, почему считывание и запись в ячейку осуществляется в любой момент времени.
Информация хранится и перезаписывается в электронных ячейках только тогда, когда ваш ПК работает, после его выключения вся информация, которая находится в ОЗУ, стирается. Совокупность электронных ячеек в современной оперативке может достигать объема от 1 ГБ до 32 ГБ. Типы ОЗУ, которые сейчас используются, носят название DRAM и SRAM.
Классификация и виды SDRAM в современных компьютерах
Наиболее распространенным подвидом памяти DRAM является синхронная память SDRAM. Первым подтипом памяти SDRAM является DDR SDRAM. Модули оперативной памяти DDR SDRAM появились в конце 1990-х. В то время были популярны компьютеры на базе процессов Pentium. На изображении ниже показана планка формата DDR PC-3200 SODIMM на 512 мегабайт от фирмы GOODRAM.
Приставка SODIMM означает, что память предназначена для ноутбука. В 2003 году на смену DDR SDRAM пришла DDR2 SDRAM. Эта память использовалась в современных компьютерах того времени вплоть до 2010 года, пока ее не вытеснила память следующего поколения. На изображении ниже показана планка формата DDR2 PC2-6400 на 2 гигабайта от фирмы GOODRAM. Каждое поколение памяти демонстрирует все большую скорость обмена данными.
На смену формата DDR2 SDRAM в 2007 году пришел еще более быстрый DDR3 SDRAM. Этот формат по сегодняшний день остается самым популярным, хоть и в спину ему дышит новый формат. Формат DDR3 SDRAM сейчас применяется не только в современных компьютерах, но также в смартфонах, планшетных ПК и бюджетных видеокартах. Также память DDR3 SDRAM используется в игровой приставке Xbox One восьмого поколения от Microsoft. В этой приставке используется 8 гигабайт ОЗУ формата DDR3 SDRAM. На изображении ниже показана память формата DDR3 PC3-10600 на 4 гигабайта от фирмы GOODRAM.
В ближайшее время тип памяти DDR3 SDRAM заменит новый тип DDR4 SDRAM. После чего DDR3 SDRAM ждет судьба прошлых поколений. Массовый выпуск памяти DDR4 SDRAM начался во втором квартале 2014 года, и она уже используется на материнских платах с процессорным разъемом Socket 1151. На изображении ниже показана планка формата DDR4 PC4-17000 на 4 гигабайта от фирмы GOODRAM.
Пропускная способность DDR4 SDRAM может достигать 25 600 Мб/c.
Как определить тип оперативки в компьютере
Определить тип оперативной памяти, которая находится в ноутбуке или в стационарном компьютере можно очень легко, используя утилиту CPU-Z. Эта утилита является абсолютно бесплатной. Загрузить CPU-Z можно с ее официального сайта www.cpuid.com. После загрузки и установки, откройте утилиту и перейдите ко вкладке «SPD». На изображении ниже показано окно утилиты с открытой вкладкой «SPD».
В этом окне видно, что в компьютере, на котором открыта утилита, установлена оперативная память типа DDR3 PC3-12800 на 4 гигабайта от компании Kingston. Таким же образом можно определить тип памяти и ее свойства на любом компьютере. Например, ниже изображено окно CPU-Z с ОЗУ DDR2 PC2-5300 на 512 ГБ от компании Samsung.
А в этом окне изображено окно CPU-Z с ОЗУ DDR4 PC4-21300 на 4 ГБ от компании ADATA Technology.
Данный способ проверки просто незаменим в ситуации, когда нужно проверить на совместимость память, которую вы собираетесь приобрести для расширения ОЗУ вашего ПК.
Подбираем оперативку для нового системника
Чтобы подобрать оперативную память к определенной компьютерной конфигурации, мы опишем ниже пример, из которого видно как легко можно подобрать ОЗУ к любой конфигурации ПК. Для примера мы возьмем такую новейшую конфигурацию на базе процессора Intel:
Чтобы подобрать оперативку для такой конфигурации, нужно перейти на официальную страницу материнской платы ASRock H110M-HDS — www.asrock.com/mb/Intel/H110M-HDS.
На странице можно найти строку «Supports DDR4 2133», которая гласит, что для материнской платы подходит оперативка с частотой 2133 MHz. Теперь перейдем в пункт меню «Specifications» на этой странице.
В открывшейся странице можно найти строку «Max. capacity of system memory: 32GB», которая гласит, что наша материнская плата поддерживает до 32 гигабайт ОЗУ. Из данных, которые мы получили на странице материнской платы можно сделать вывод, что для нашей системы приемлемым вариантом будет оперативка такого типа — два модуля памяти DDR4-2133 16 ГБ PC4-17000.
Мы специально указали два модуля памяти по 16 ГБ, а не один на 32, так как два модуля могут работать в двухканальном режиме.
Вы можете установить вышеописанные модули от любого производителя, но лучше всего подойдут эти модули ОЗУ. Они представлены на официальной странице к материнской плате в пункте «Memory Support List», так как их совместимость проверена производителем.
Из примера видно, как легко можно узнать информацию по поводу рассматриваемого системника. Таким же образом подбирается оперативная память для всех остальных компьютерных конфигураций. Также хочется отметить, что на рассмотренной выше конфигурации можно запустить все новейшие игры с самыми высокими настройками графики.
Например, на этой конфигурации запустятся без проблем в разрешении 4K такие новые игры, как Tom Clancy’s The Division, Far Cry Primal, Fallout 4 и множество других, так как подобная система отвечает всем реалиям игрового рынка. Единственным ограничением для такой конфигурации будет ее цена. Примерная цена такого системника без монитора, включая два модуля памяти, корпус и комплектующие, описанные выше, составит порядка 2000 долларов.
Классификация и виды SDRAM в видеокартах
В новых видеокартах и в старых моделях используется тот же тип синхронной памяти SDRAM. В новых и устаревших моделях видеокарт наиболее часто используется такой тип видеопамяти:
Чтобы узнать тип вашей видеокарты, объем ее ОЗУ и тип памяти, нужно воспользоваться бесплатной утилитой GPU-Z. Например, на изображении ниже изображено окно программы GPU-Z, в котором описаны характеристики видеокарты GeForce GTX 980 Ti.
На смену популярной сегодня GDDR5 SDRAM в ближайшем будущем придет GDDR5X SDRAM. Это новая классификация видеопамяти обещает поднять пропускную способность до 512 ГБ/с. Ответом на вопрос, чего хотят добиться производители от такой большой пропускной способности, достаточно прост. С приходом таких форматов, как 4K и 8K, а также VR устройств производительности нынешних видеокарт уже не хватает.
Разница между ОЗУ и ПЗУ
ПЗУ расшифровывается как постоянное запоминающее устройство. В отличие от оперативной памяти, ПЗУ используют для записи информации, которая будет храниться там постоянно. Например, ПЗУ используют в таких устройствах:
Во всех описанных устройствах выше, код для их работы хранится в ПЗУ. ПЗУ является энергонезависимой памятью, поэтому после выключения этих устройств вся информация сохранится в ней — значит это и является главным отличием ПЗУ от ОЗУ.
Подводим итог
В этой статье мы кратко узнали все подробности, как в теории, так и на практике, касающиеся оперативного запоминающего устройства и их классификации, а также рассмотрели, в чем разница между ОЗУ и ПЗУ.
Также наш материал будет особенно полезен тем пользователям ПК, которые хотят узнать свой тип ОЗУ, установленный в компьютере, или узнать какую оперативку нужно применять для различных конфигураций.
Надеемся, наш материал окажется интересным для наших читателей и позволит им решить множество задач, связанных с оперативной памятью.