что такое абсолютный возраст горных пород
Абсолютный геологический возраст
Абсолютный геологический возраст какого-либо события истории Земли — время, прошедшее от этого события до настоящего времени; исчисляется в тысячах, миллионах и миллиардах лет.
Название «абсолютный» используется, чтобы отличать его от относительного возраста — привязки события к определённым интервалам геохронологической шкалы — эре, периоду, эпохе и веку. Относительный возраст обычно определяется методом руководящих ископаемых.
Абсолютный геологический возраст горных пород чаще всего определяется методом радиоизотопного датирования — по накоплению продуктов распада радиоактивных элементов, входящих в состав этих горных пород. В этом случае он называется также изотопным или радиологическим возрастом.
Используется много разных методов радиоизотопного датирования, самые известные из которых — уран-свинцовый (накопление свинца в ураново-ториевых минералах), калий-аргоновый (накопление аргона в калиевых минералах), стронциевый (превращение рубидия в стронций), радиоуглеродный (по количеству углерода-14 в органических остатках). У каждого метода — своя область применимости, ограничения, достоинства и недостатки.
Для определения абсолютного возраста событий, которые произошли не очень давно, используется ряд других методов, в частности, термолюминесцентное датирование, оптическое датирование, определение возраста по кольцам деревьев, по ледяным кернам, по гидратации стекла, по рацемизации аминокислот.
См. также
Ссылки
Полезное
Смотреть что такое «Абсолютный геологический возраст» в других словарях:
геологический возраст горных пород — бывает абсолютный и относительный. Абсолютный геологический возраст (время, прошедшее с момента образования горной породы) определяют на основании изучения распада радиоактивных элементов (уран, торий, калий, рубидий и др.), содержащихся в… … Географическая энциклопедия
геологический возраст — Время, прошедшее с момента образования горных пород или форм рельефа (различают абсолютный возраст и относительный возраст) … Словарь по географии
ВОЗРАСТ ГЕОЛОГИЧЕСКИЙ АБСОЛЮТНЫЙ МОДЕЛЬНЫЙ — вычисленный по изотопному составу обыкновенного свинца; существует несколько вариантов его вычисления (Старик, 1962; Расселл и Фаркуар, 1962). Модельный возраст является “грубым”, приближенным. Син.: возраст геологический абсолютный условный.… … Геологическая энциклопедия
Возраст геологический — время, прошедшее от какого либо геол. события: наступание моря, накопление одного пласта или определенной толщи г. п., вымирание одних организмов и появление других, внедрение интрузий и др. Различают В. г. абсолютный и В. г. относительный.… … Геологическая энциклопедия
ВОЗРАСТ ГЕОЛОГИЧЕСКИЙ АБСОЛЮТНЫЙ УСЛОВНЫЙ — син. термина возраст геологический абсолютный модельный; применяется в основном в зарубежной лит. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
ВОЗРАСТ ГЕОЛОГИЧЕСКИЙ АБСОЛЮТНЫЙ ЗАВЫШЕННЫЙ — широко распространенный в радиологической лит. термин, означающий, что полученные значения возраста являются более древними, чем истинный возраст. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
ВОЗРАСТ ГЕОЛОГИЧЕСКИЙ АБСОЛЮТНЫЙ ЗАНИЖЕННЫЙ — широко распространенный в радиологической лит. термин, означающий, что полученные значения возраста являются более молодыми, чем истинный возраст. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
ВОЗРАСТ ГЕОЛОГИЧЕСКИЙ АБСОЛЮТНЫЙ — возраст г. п., м лов и руд, выраженный в единицах астрономического времени и устанавливаемый разл. радиологическими методами по накоплению в м лах и г. п. продуктов распада радиоактивных элементов. Исчисление ведется от настоящего времени, т. е.… … Геологическая энциклопедия
Возраст геологический абсолютный — время, прошедшее от какого либо геологического события до современной эпохи, исчисляемое млн. и тыс. лет … Геологические термины
Возраст геологический — возраст горных пород. Различают абсолютный и относительный В. г. Абсолютный В. г. возраст горных пород, выраженный в абсолютных единицах времени; устанавливается на основании изучения распада радиоактивных элементов (уран, торий, калий,… … Большая советская энциклопедия
Основы нефтегазового производства
Введение в геологию
1. Внутреннее строение Земли
Химический состав Земли
Химический состав Земли схож с составом других планет земной группы, например Венеры или Марса (см. рисунок 1).
В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см3.
О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.
Рис. 1. Химический состав Земли
Ядро
Ядро расположено в центре Земли (см.рис 3), его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см3 (сравните: вода — 1 г/см3). Ядро предположительно состоит из сплавов железа и никеля.
Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.
Рис. 3. Строение Земли: ядро, мантия и земная кора
Мантия
Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.
Земная кора
От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).
Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.
Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.
Состав и строение земной коры
По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).
Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.
Рис. 4. Строение земной коры
» alt=»» width=»311″ height=»300″ />
Рис. 5. Состав земной коры
Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.
» alt=»» width=»456″ height=»261″ />
Рис. 6. Общий минеральный состав Земли
Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.
Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).
Органогенные горные породы образуются в результате накопления останков животных и растений.
Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).
Таблица 1. Обломочные горные породы в зависимости от размеров обломков
Размер облом кон (частиц)
Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.
В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.
Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.
В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».
» alt=»» width=»480″ height=»316.9111969112″ />
Рис. 7. Классификация горных пород по происхождению
«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.
«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.
Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.
Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.
» alt=»» width=»480″ height=»441.41176470588″ />
Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия
Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.
Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.
» alt=»» width=»312″ height=»213″ />
Рис. 9. Строение материковой и океанической земной коры
Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.
Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.
Субконтинентальная кора расположена, например, на вулканических островных дугах.
Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.
Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.
Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.
Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.
Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.
Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.
Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.
Тепло земной коры — важный энергетический источник.
Часть земной коры, простирающаяся глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.
Геологический возраст
Категории Геология | Под редакцией сообщества: Науки о Земле
Геологический возраст [1]– возраст горных пород. Геологический возраст – это время, прошедшее от определенного события в геологической истории Земли: отложения слоя горных пород, образования гор, оледенения и пр. Различают относительный и абсолютный геологический возраст.
Содержание
↑Возраст земли
Возраст Земли как планеты по последним данным оценивается
4,6 млрд. лет. Изучение метеоритов и лунных пород также подтверждает эту цифру. Однако самые древние породы Земли, доступные непосредственному изучению, имеют возраст около 3,8 млрд. лет. Поэтому весь более древний этап истории Земли носит название до геологической стадии. Объектом же геологического изучения является история Земли за последние 3,8 млрд. лет, которая выделяется в ее геологическую стадию формирования. Для выяснения закономерностей и условий образования горных пород необходимо знать последовательность их образования и возраст, т.е. установить их геологическую хронологию. Различают относительный возраст горных пород (относительная геохронология) и абсолютный возраст горных пород (абсолютная геохронология). Установлением возраста горных пород занимается наука стратиграфия (от лат. Stratum – слой).
↑Относительный возраст горных пород и методы его определения
Определение относительного возраста пород – это установление, какие породы образовались раньше, а какие – позже.
Относительный возраст осадочных горных пород устанавливается с помощью геолого–стратиграфических (стратиграфического, литологического, тектонического, геофизических) и биостратиграфических методов.
Стратиграфический метод основан на том, что возраст слоя при нормальном залегании определяется – нижележащие их слои являются более древними, а вышележащие-более молодыми. Этот метод может быть использован и при складчатом залегании слоев. Не может быть использован при опрокинутых складках.
Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных – в склонах рек, озер, морей, искусственных – карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (т.е. состоят из одинаковых минералов и горных пород), могут быть одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфически выдержаны на большой площади.
Тектонический метод основан на том, что мощные процессы деформации горных пород проявляются (как правило) одновременно на больших территориях, поэтому одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием.
Возникшие горные области разрушались, а на выровненную территорию вновь наступало море, на дне которого уже несогласно накапливались толщи новых осадочных горных пород. В этом случае различные несогласия служат границами, подразделяющими разрезы на отдельные толщи.
Геофизические методы основаны на использовании физических характеристик отложений (удельного сопротивления, природной радиоактивности, остаточной намагниченности горных пород и т.д.) при их расчленении на слои и сопоставлении.
Изучение остаточной намагниченности горных пород называют палеомагнитным методом ; он основан на том, что магнитные минералы, выпадая в осадок, распластаются в соответствии с магнитным полем Земли той эпохи которая, как известно, постоянно менялась в течении геологического времени. Эта ориентировка сохраняется постоянно, если порода не подвергается нагреванию выше 500 о С (т.н. точка Кюри) или интенсивной деформации и перекристаллизации. Следовательно, в различных слоях направление магнитного поля будет различным. Палеомагнитизм позволяет т.о. сопоставлять отложения значительно удаленные друг от друга (западное побережье Африки и восточное побережье Латинской Америки).
Биостратиграфические или палеонтологические методы состоят в определении возраста горных пород с помощью изучения ископаемых организмов.
Определение относительного возраста магматических и метаморфических горных пород (все выше охарактеризованные методы – для определения возраста осадочных пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению к осадочным породам.
Относительный возраст интрузивных пород определяется по соотношению магматических пород и вмещающих осадочных пород, возраст которых установлен.
Определение относительного возраста метармофических пород аналогично определению относительного возраста магматических пород.
↑Абсолютный возраст горных пород и методы его определения
Абсолютная геохронология устанавливает возраст горных пород в единицах времени[1]. Определение абсолютного возраста необходимо для корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лишенных палеонтологических остатков фанерозойских и долембрийских пород.
К методам определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и не радиологические методы
Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста горных пород, в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала или породы.
Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево–аргоновый, рубидиево–стронциевый, радиоуглеродный и др.
Но радиологические методы уступают по точности ядерным.
Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (
Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в земной коре в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.
Биологический метод базируется на представлении о сравнительно равномерном развитии органического мира. Исходный параметр – продолжительность четвертичного периода 1,7 – 2 млн. лет.
↑Периодизация истории земли геохронологическая шкала
На основании изменений в развитии органического мира вся история Земли подразделяется на несколько геохронологических этапов (эра период и т.п.), которым соответствуют определенные комплексы отложений (группы, системы и т.п.). В течение этих этапов в различных районах Земли происходили процессы накопления осадков или разрушение ранее образовавшихся отложений. Поэтому полный разрез, включающий все известные системы в каком либо месте не известен ни в одной точке Земли. Общие стратиграфическая и геохронологическая шкала основаны на изучении реально существующих геологических разрезов в различных районах суши Земли лежат особенности состава пород.
Подразделения геохронологической шкалы соответствуют подразделениям стратиграфической шкалы.
Ссылки
Эта статья еще не написана, но вы можете сделать это.
Геологический возраст
Категории Геология | Под редакцией сообщества: Науки о Земле
Геологический возраст [1]– возраст горных пород. Геологический возраст – это время, прошедшее от определенного события в геологической истории Земли: отложения слоя горных пород, образования гор, оледенения и пр. Различают относительный и абсолютный геологический возраст.
Содержание
↑Возраст земли
Возраст Земли как планеты по последним данным оценивается
4,6 млрд. лет. Изучение метеоритов и лунных пород также подтверждает эту цифру. Однако самые древние породы Земли, доступные непосредственному изучению, имеют возраст около 3,8 млрд. лет. Поэтому весь более древний этап истории Земли носит название до геологической стадии. Объектом же геологического изучения является история Земли за последние 3,8 млрд. лет, которая выделяется в ее геологическую стадию формирования. Для выяснения закономерностей и условий образования горных пород необходимо знать последовательность их образования и возраст, т.е. установить их геологическую хронологию. Различают относительный возраст горных пород (относительная геохронология) и абсолютный возраст горных пород (абсолютная геохронология). Установлением возраста горных пород занимается наука стратиграфия (от лат. Stratum – слой).
↑Относительный возраст горных пород и методы его определения
Определение относительного возраста пород – это установление, какие породы образовались раньше, а какие – позже.
Относительный возраст осадочных горных пород устанавливается с помощью геолого–стратиграфических (стратиграфического, литологического, тектонического, геофизических) и биостратиграфических методов.
Стратиграфический метод основан на том, что возраст слоя при нормальном залегании определяется – нижележащие их слои являются более древними, а вышележащие-более молодыми. Этот метод может быть использован и при складчатом залегании слоев. Не может быть использован при опрокинутых складках.
Литологический метод основан на изучении и сравнении состава пород в разных обнажениях (естественных – в склонах рек, озер, морей, искусственных – карьерах, котлованах и т.д.). На ограниченной по площади территории, отложения одинакового вещественного состава (т.е. состоят из одинаковых минералов и горных пород), могут быть одновозрастными. При сопоставлении разрезов различных обнажений используют маркирующие горизонты, которые отчетливо выделяются среди других пород и стратиграфически выдержаны на большой площади.
Тектонический метод основан на том, что мощные процессы деформации горных пород проявляются (как правило) одновременно на больших территориях, поэтому одновозрастные толщи имеют примерно одинаковую степень дислоцированности (смещения). В истории Земли осадконакопления периодически сменялись складчатостью и горообразованием.
Возникшие горные области разрушались, а на выровненную территорию вновь наступало море, на дне которого уже несогласно накапливались толщи новых осадочных горных пород. В этом случае различные несогласия служат границами, подразделяющими разрезы на отдельные толщи.
Геофизические методы основаны на использовании физических характеристик отложений (удельного сопротивления, природной радиоактивности, остаточной намагниченности горных пород и т.д.) при их расчленении на слои и сопоставлении.
Изучение остаточной намагниченности горных пород называют палеомагнитным методом ; он основан на том, что магнитные минералы, выпадая в осадок, распластаются в соответствии с магнитным полем Земли той эпохи которая, как известно, постоянно менялась в течении геологического времени. Эта ориентировка сохраняется постоянно, если порода не подвергается нагреванию выше 500 о С (т.н. точка Кюри) или интенсивной деформации и перекристаллизации. Следовательно, в различных слоях направление магнитного поля будет различным. Палеомагнитизм позволяет т.о. сопоставлять отложения значительно удаленные друг от друга (западное побережье Африки и восточное побережье Латинской Америки).
Биостратиграфические или палеонтологические методы состоят в определении возраста горных пород с помощью изучения ископаемых организмов.
Определение относительного возраста магматических и метаморфических горных пород (все выше охарактеризованные методы – для определения возраста осадочных пород) осложнено отсутствием палеонтологических остатков. Возраст эффузивных пород, залегающих совместно с осадочными устанавливается по соотношению к осадочным породам.
Относительный возраст интрузивных пород определяется по соотношению магматических пород и вмещающих осадочных пород, возраст которых установлен.
Определение относительного возраста метармофических пород аналогично определению относительного возраста магматических пород.
↑Абсолютный возраст горных пород и методы его определения
Абсолютная геохронология устанавливает возраст горных пород в единицах времени[1]. Определение абсолютного возраста необходимо для корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лишенных палеонтологических остатков фанерозойских и долембрийских пород.
К методам определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и не радиологические методы
Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста горных пород, в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала или породы.
Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево–аргоновый, рубидиево–стронциевый, радиоуглеродный и др.
Но радиологические методы уступают по точности ядерным.
Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (
Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в земной коре в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.
Биологический метод базируется на представлении о сравнительно равномерном развитии органического мира. Исходный параметр – продолжительность четвертичного периода 1,7 – 2 млн. лет.
↑Периодизация истории земли геохронологическая шкала
На основании изменений в развитии органического мира вся история Земли подразделяется на несколько геохронологических этапов (эра период и т.п.), которым соответствуют определенные комплексы отложений (группы, системы и т.п.). В течение этих этапов в различных районах Земли происходили процессы накопления осадков или разрушение ранее образовавшихся отложений. Поэтому полный разрез, включающий все известные системы в каком либо месте не известен ни в одной точке Земли. Общие стратиграфическая и геохронологическая шкала основаны на изучении реально существующих геологических разрезов в различных районах суши Земли лежат особенности состава пород.
Подразделения геохронологической шкалы соответствуют подразделениям стратиграфической шкалы.
Ссылки
Эта статья еще не написана, но вы можете сделать это.