что лучше когда хромосом больше или меньше

Почему у людей именно 23 пары хромосом?

Еще из курса школьной биологии нам известно, что при нормальном формировании человеческого организма (читай: без различных врожденных патологий), большая часть нашей наследственной информации закодирована в 23 парах хромосом. Но вы никогда не задумывались, почему этих пар именно 23? Почему не 24, 25 или даже 16? Да и вообще, почему хромосом именно четное число? Давайте разбираться.

что лучше когда хромосом больше или меньше. Смотреть фото что лучше когда хромосом больше или меньше. Смотреть картинку что лучше когда хромосом больше или меньше. Картинка про что лучше когда хромосом больше или меньше. Фото что лучше когда хромосом больше или меньше

ДНК и хромосомы

Чтобы понять, что такое хромосомы, сначала нужно понять, что такое ДНК. ДНК представляет собой сложную молекулу, встречающуюся у всех растений и животных. Она содержится почти в каждой клетке организма и несет в себе всю информацию, необходимую для поддержания жизнедеятельности организма, обеспечения всех внутренних процессов и, что самое важное, для размножения. ДНК является основным способом передачи наследственной информации и в процессе размножения часть ДНК передается от обоих родителей потомству.

Такое огромное количество информации, которое несет наша ДНК, должно занимать довольно много «места». И это действительно так. Если «растянуть» ДНК, содержащуюся во всего лишь одной клетке, то ее длина составит около 2 метров. И наш организм имеет довольно хитрую систему упаковки всего этого объема данных. А помогает в этом как раз хромосома.

Почему именно 23 пары хромосом

Сразу стоит отметить, что число в 23 пары хромосом не является универсальным среди живых существ. Во-первых, люди являются «диплоидными» видами, что означает, что большинство наших хромосом образуют согласованные пары (хотя встречаются и виды, у которых количество хромосом нечетное). Это упрощает хранение информации. Однако сложность организации вида не зависит от количества пар хромосом. Так, например, у некоторых видов лягушек 18 пар хромосом, а у креветок 90 пар!

что лучше когда хромосом больше или меньше. Смотреть фото что лучше когда хромосом больше или меньше. Смотреть картинку что лучше когда хромосом больше или меньше. Картинка про что лучше когда хромосом больше или меньше. Фото что лучше когда хромосом больше или меньше

«Люди имеют 23 пары хромосом, в то время как человекообразные обезьяны (шимпанзе, гориллы и орангутаны) имеют 24 пары хромосом», — говорит научный сотрудник Национального научно-исследовательского института генома человека Белен Херл. «Это связано с тем, что в эволюционной линии человека две хромосомы предков обезьяны слились в одну. Таким образом, у человека на одну пару хромосом меньше. Это одно из главных отличий генома человека и генома наших ближайших родственников. Можно сказать, что это количество обусловлено исторически. При этом, нельзя отрицать, что когда-то количество хромосом у далеких предков было другим, но такой набор генов не позволил им нормально существовать и поэтому организмам «пришлось» видоизменяться.»

Что будет, если количество хромосом изменится

Увеличение или уменьшение количества хромосом во взрослом организме произойти практически не может. Зато это может случиться при формировании плода в утробе матери. Одной из наиболее распространенных форм патологии хромосом является трисомия, которая заключается в наличии дополнительной хромосомы в клетках. Одним из хорошо известных результатов трисомии является синдром Дауна, который является состоянием, вызванным наличием трех (а не двух) хромосом в 21 паре. Потеря одной хромосомы в клетке называется моносомией и описывает состояние, при котором люди имеют только одну копию определенной хромосомы на клетку, а не две.

При этом нечетное количество хромосом затрудняет процесс считывания информации или же нарушает работу некоторых систем (например, отсутствие половых хромосом при ряде врожденных заболеваний не позволяет иметь потомство). Таким образом, исторически сформировавшееся число в 23 пары хромосом позволяет нам жить на этой планете и сохранять целостность нашего вида.

Еще больше интересной информации вы можете узнать в нашем новостном канале в Телеграм.

Источник

46 – норма?

Считаем хромосомы: сколько человеку для счастья нужно

В отличие от зубов, хромосом человеку положено иметь строго определенное число – 46 штук. Однако при ближайшем рассмотрении выясняется, что каждый из нас может оказаться носителем лишних хромосом. Откуда они берутся, где прячутся и какой наносят вред (а может, пользу?) – разберемся с участием современной научной литературы

Сначала договоримся о терминологии. Окончательно человеческие хромосомы посчитали чуть больше полувека назад – в 1956 году. С тех пор мы знаем, что в соматических, то есть не половых клетках, их обычно 46 штук – 23 пары.

Хромосомы в паре (одна получена от отца, другая – от матери) называют гомологичными. На них расположены гены, выполняющие одинаковые функции, однако нередко различающиеся по строению. Исключение составляют половые хромосомы – Х и Y, генный состав которых совпадает не полностью. Все остальные хромосомы, кроме половых, называют аутосомами.

Количество наборов гомологичных хромосом – плоидность – в половых клетках равно одному, а в соматических, как правило, двум.

что лучше когда хромосом больше или меньше. Смотреть фото что лучше когда хромосом больше или меньше. Смотреть картинку что лучше когда хромосом больше или меньше. Картинка про что лучше когда хромосом больше или меньше. Фото что лучше когда хромосом больше или меньше

Интересно, что не у всех видов млекопитающих число хромосом постоянно. Например, у некоторых представителей грызунов, собак и оленей обнаружили так называемые В-хромосомы. Это небольшие дополнительные хромосомы, в которых практически нет участков, кодирующих белки, а делятся и наследуются они вместе с основным набором и, как правило, не влияют на работу организма. Полагают, что В-хромосомы – это просто удвоенные фрагменты ДНК, «паразитирующие» на основном геноме.

У человека до сих пор В-хромосомы обнаружены не были. Зато иногда в клетках возникает дополнительный набор хромосом – тогда говорят о полиплоидии, а если их число не кратно 23 – об анеуплоидии. Полиплоидия встречается у отдельных типов клеток и способствует их усиленной работе, в то время как анеуплоидия обычно свидетельствует о нарушениях в работе клетки и нередко приводит к ее гибели.

Делиться надо честно

Чаще всего неправильное количество хромосом является следствием неудачного деления клеток. В соматических клетках после удвоения ДНК материнская хромосома и ее копия оказываются сцеплены вместе белками когезинами. Потом на их центральные части садятся белковые комплексы кинетохоры, к которым позже прикрепляются микротрубочки. При делении по микротрубочкам кинетохоры разъезжаются к разным полюсам клетки и тянут за собой хромосомы. Если сшивки между копиями хромосомы разрушатся раньше времени, то к ним могут прикрепиться микротрубочки от одного и того же полюса, и тогда одна из дочерних клеток получит лишнюю хромосому, а вторая останется обделенной.

что лучше когда хромосом больше или меньше. Смотреть фото что лучше когда хромосом больше или меньше. Смотреть картинку что лучше когда хромосом больше или меньше. Картинка про что лучше когда хромосом больше или меньше. Фото что лучше когда хромосом больше или меньше

Деление при образовании половых клеток (мейоз) устроено более сложно. После удвоения ДНК каждая хромосома и ее копия, как обычно, сшиты когезинами. Затем гомологичные хромосомы (полученные от отца и матери), а точнее их пары, тоже сцепляются друг с другом, и получается так называемая тетрада, или четверка. А дальше клетке предстоит поделиться два раза. В ходе первого деления расходятся гомологичные хромосомы, то есть дочерние клетки содержат пары одинаковых хромосом. А во втором делении эти пары расходятся, и в результате половые клетки несут одинарный набор хромосом.

Мейоз тоже нередко проходит с ошибками. Проблема в том, что конструкция из сцепленных двух пар гомологичных хромосом может перекручиваться в пространстве или разделяться в неположенных местах. Результатом снова будет неравномерное распределение хромосом. Иногда половой клетке удается это отследить, чтобы не передавать дефект по наследству. Лишние хромосомы часто неправильно уложены или разорваны, что запускает программу гибели. Например, среди сперматозоидов действует такой отбор по качеству. А вот яйцеклеткам повезло меньше. Все они у человека образуются еще до рождения, готовятся к делению, а потом замирают. Хромосомы уже удвоены, тетрады образованы, а деление отложено. В таком виде они живут до репродуктивного периода. Дальше яйцеклетки по очереди созревают, делятся первый раз и снова замирают. Второе деление происходит уже сразу после оплодотворения. И на этом этапе проконтролировать качество деления уже сложно. А риски больше, ведь четыре хромосомы в яйцеклетке остаются сшитыми в течение десятков лет. За это время в когезинах накапливаются поломки, и хромосомы могут спонтанно разделяться. Поэтому чем старше женщина, тем больше вероятность неправильного расхождения хромосом в яйцеклетке.

Схема мейоза

Анеуплоидия в половых клетках неизбежно ведет к анеуплоидии зародыша. При оплодотворении здоровой яйцеклетки с 23 хромосомами сперматозоидом с лишней или недостающей хромосомами (или наоборот) число хромосом у зиготы, очевидно, будет отлично от 46. Но даже если половые клетки здоровы, это не дает гарантий здорового развития. В первые дни после оплодотворения клетки зародыша активно делятся, чтобы быстро набрать клеточную массу. Судя по всему, в ходе быстрых делений нет времени проверять корректность расхождения хромосом, поэтому могут возникнуть анеуплоидные клетки. И если произойдет ошибка, то дальнейшая судьба зародыша зависит от того, в каком делении это случилось. Если равновесие нарушено уже в первом делении зиготы, то весь организм вырастет анеуплоидным. Если же проблема возникла позже, то исход определяется соотношением здоровых и аномальных клеток.

Часть последних может дальше погибнуть, и мы никогда не узнаем об их существовании. А может принять участие в развитии организма, и тогда он получится мозаичным – разные клетки будут нести разный генетический материал. Мозаицизм доставляет немало хлопот пренатальным диагностам. Например, при риске рождения ребенка с синдромом Дауна иногда извлекают одну или несколько клеток зародыша (на той стадии, когда это не должно представлять опасности) и считают в них хромосомы. Но если зародыш мозаичен, то такой метод становится не особенно эффективным.

Все случаи анеуплоидии логично делятся на две группы: недостаток и избыток хромосом. Проблемы, возникающие при недостатке, вполне ожидаемы: минус одна хромосома означает минус сотни генов.

Если гомологичная хромосома работает нормально, то клетка может отделаться только недостаточным количеством закодированных там белков. Но если среди оставшихся на гомологичной хромосоме генов какие-то не работают, то соответствующих белков в клетке не появится совсем.

В случае избытка хромосом все не так очевидно. Генов становится больше, но здесь – увы – больше не значит лучше.

Во-первых, лишний генетический материал увеличивает нагрузку на ядро: дополнительную нить ДНК нужно разместить в ядре и обслужить системами считывания информации.

что лучше когда хромосом больше или меньше. Смотреть фото что лучше когда хромосом больше или меньше. Смотреть картинку что лучше когда хромосом больше или меньше. Картинка про что лучше когда хромосом больше или меньше. Фото что лучше когда хромосом больше или меньше
Расположение хромосом в ядре клетки человека (хромосомные территории).
Изображение: Bolzer et al., 2005 / Wikimedia Commons / CC BY 2.5

Ученые обнаружили, что у людей с синдромом Дауна, чьи клетки несут дополнительную 21-ю хромосому, в основном нарушается работа генов, находящихся на других хромосомах. Видимо, избыток ДНК в ядре приводит к тому, что белков, поддерживающих работу хромосом, не хватает на всех.

Во-вторых, нарушается баланс в количестве клеточных белков. Например, если за какой-то процесс в клетке отвечают белки-активаторы и белки-ингибиторы и их соотношение обычно зависит от внешних сигналов, то дополнительная доза одних или других приведет к тому, что клетка перестанет адекватно реагировать на внешний сигнал. И наконец, у анеуплоидной клетки растут шансы погибнуть. При удвоении ДНК перед делением неизбежно возникают ошибки, и клеточные белки системы репарации их распознают, чинят и запускают удвоение снова. Если хромосом слишком много, то белков не хватает, ошибки накапливаются и запускается апоптоз – программируемая гибель клетки. Но даже если клетка не погибает и делится, то результатом такого деления тоже, скорее всего, станут анеуплоиды.

Если даже в пределах одной клетки анеуплоидия чревата нарушениями работы и гибелью, то неудивительно, что целому анеуплоидному организму выжить непросто. На данный момент известно только три аутосомы – 13, 18 и 21-я, трисомия по которым (то есть лишняя, третья хромосома в клетках) как-то совместима с жизнью. Вероятно, это связано с тем, что они самые маленькие и несут меньше всего генов. При этом дети с трисомией по 13-й (синдром Патау) и 18-й (синдром Эдвардса) хромосомам доживают в лучшем случае до 10 лет, а чаще живут меньше года. И только трисомия по самой маленькой в геноме, 21-й хромосоме, известная как синдром Дауна, позволяет жить до 60 лет.

Совсем редко встречаются люди с общей полиплоидией. В норме полиплоидные клетки (несущие не две, а от четырех до 128 наборов хромосом) можно обнаружить в организме человека, например в печени или красном костном мозге. Это, как правило, большие клетки с усиленным синтезом белка, которым не требуется активное деление.

Дополнительный набор хромосом усложняет задачу их распределения по дочерним клеткам, поэтому полиплоидные зародыши, как правило, не выживают. Тем не менее описано около 10 случаев, когда дети с 92 хромосомами (тетраплоиды) появлялись на свет и жили от нескольких часов до нескольких лет. Впрочем, как и в случае других хромосомных аномалий, они отставали в развитии, в том числе и умственном. Однако многим людям с генетическими аномалиями приходит на помощь мозаицизм. Если аномалия развилась уже в ходе дробления зародыша, то некоторое количество клеток могут остаться здоровыми. В таких случаях тяжесть симптомов снижается, а продолжительность жизни растет.

Однако есть и такие хромосомы, увеличение числа которых совместимо с жизнью человека или даже проходит незаметно. И это, как ни удивительно, половые хромосомы. Причиной тому – гендерная несправедливость: примерно у половины людей в нашей популяции (девочек) Х-хромосом в два раза больше, чем у других (мальчиков). При этом Х-хромосомы служат не только для определения пола, но и несут более 800 генов (то есть в два раза больше, чем лишняя 21-я хромосома, доставляющая немало хлопот организму). Но девочкам приходит на помощь естественный механизм устранения неравенства: одна из Х-хромосом инактивируется, скручивается и превращается в тельце Барра. В большинстве случаев выбор происходит случайно, и в ряде клеток в результате активна материнская Х-хромосома, а в других – отцовская. Таким образом, все девочки оказываются мозаичными, потому что в разных клетках работают разные копии генов. Классическим примером такой мозаичности являются черепаховые кошки: на их Х-хромосоме находится ген, отвечающий за меланин (пигмент, определяющий, среди прочего, цвет шерсти). В разных клетках работают разные копии, поэтому окраска получается пятнистой и не передается по наследству, так как инактивация происходит случайным образом.

что лучше когда хромосом больше или меньше. Смотреть фото что лучше когда хромосом больше или меньше. Смотреть картинку что лучше когда хромосом больше или меньше. Картинка про что лучше когда хромосом больше или меньше. Фото что лучше когда хромосом больше или меньше
Кошка черепахового окраса.
Фото: Lisa Ann Yount / Flickr / Public domain

В результате инактивации в клетках человека всегда работает только одна Х-хромосома. Этот механизм позволяет избежать серьезных неприятностей при Х-трисомии (девочки ХХХ) и синдромах Шерешевского – Тернера (девочки ХО) или Клайнфельтера (мальчики ХХY). Таким рождается примерно один из 400 детей, но жизненные функции в этих случаях обычно не нарушены существенно, и даже бесплодие возникает не всегда. Сложнее бывает тем, у кого хромосом больше трех. Обычно это значит, что хромосомы не разошлись дважды при образовании половых клеток. Случаи тетрасомии (ХХХХ, ХХYY, ХХХY, XYYY) и пентасомии (XXXXX, XXXXY, XXXYY, XXYYY, XYYYY) встречаются редко, некоторые из них описаны всего несколько раз за всю историю медицины. Все эти варианты совместимы с жизнью, и люди часто доживают до преклонных лет, при этом отклонения проявляются в аномальном развитии скелета, дефектах половых органов и снижении умственных способностей. Что характерно, дополнительная Y-хромосома сама по себе влияет на работу организма несильно. Многие мужчины с генотипом XYY даже не узнают о своей особенности. Это связано с тем, что Y-хромосома сильно меньше Х и почти не несет генов, влияющих на жизнеспособность.

У половых хромосом есть и еще одна интересная особенность. Многие мутации генов, расположенных на аутосомах, приводят к отклонениям в работе многих тканей и органов. В то же время большинство мутаций генов на половых хромосомах проявляется только в нарушении умственной деятельности. Получается, что в существенной степени половые хромосомы контролируют развитие мозга. На основании этого некоторые ученые высказывают гипотезу, что именно на них лежит ответственность за различия (впрочем, не до конца подтвержденные) между умственными способностями мужчин и женщин.

Кому выгодно быть неправильным

Несмотря на то, что медицина знакома с хромосомными аномалиями давно, в последнее время анеуплоидия продолжает привлекать внимание ученых. Оказалось, что более 80% клеток опухолей содержат необычное количество хромосом. С одной стороны, причиной этому может служить тот факт, что белки, контролирующие качество деления, способны его затормозить. В опухолевых клетках часто мутируют эти самые белки-контролеры, поэтому снимаются ограничения на деление и не работает проверка хромосом. С другой стороны, ученые полагают, что это может служить фактором отбора опухолей на выживаемость. Согласно такой модели, клетки опухоли сначала становятся полиплоидными, а дальше в результате ошибок деления теряют разные хромосомы или их части. Получается целая популяция клеток с большим разнообразием хромосомных аномалий. Большинство из них нежизнеспособны, но некоторые могут случайно оказаться успешными, например если случайно получат дополнительные копии генов, запускающих деление, или потеряют гены, его подавляющие. Однако если дополнительно стимулировать накопление ошибок при делении, то клетки выживать не будут. На этом принципе основано действие таксола – распространенного лекарства от рака: он вызывает системное нерасхождение хромосом в клетках опухоли, которое должно запускать их программируемую гибель.

Получается, что каждый из нас может оказаться носителем лишних хромосом, по крайней мере в отдельных клетках. Однако современная наука продолжает разрабатывать стратегии борьбы с этими нежеланными пассажирами. Одна из них предлагает использовать белки, отвечающие за Х-хромосому, и натравить, например, на лишнюю 21-ю хромосому людей с синдромом Дауна. Сообщается, что на клеточных культурах этот механизм удалось привести в действие. Так что, возможно, в обозримом будущем опасные лишние хромосомы окажутся укрощены и обезврежены.

Источник

Что лучше больше хромосом или меньше хромосом

17 ноября 2008, 14:33 Наука

Мужской пол отныне не дефект

Скорое исчезновение мужскому полу не грозит — Y-хромосома и не думает редуцироваться до нуля. На ней гораздо чаще появляются новые гены, чем исчезают существующие. Более того, новый генетический анализ вообще ставит под сомнение общепринятую теорию, согласно которой Y — «дефектная», редуцированная за миллионы лет X-хромосома.

Сам факт существования огромного числа беспозвоночных подтверждает, что для процветания вида совсем не обязательно четкое разделение по половому признаку. Более того, без «сильного пола» прекрасно обходятся и некоторые более высокоорганизованные существа. Например, самки скальных ящериц довольствуются для размножения партеногенезом, и при этом способе полового размножения с соблюдением всех законов наследственности и изменчивости из «активированного» яйца тоже развивается полноценная самка.

В более или менее обозримом эволюционном прошлом человека гермафродитизма не замечено. Однако дальнейшая судьба полов и самого разделения на два пола — вопрос открытый, даже если отбросить социальную сторону этой проблемы и заняться исключительно биологической составляющей.

Ведь мужской пол — это, по большому счёту, мутация, дефект.

У большинства животных, в том числе и у человека, пол определяется наличием Y-хромосомы. А её большинство учёных считают «потомком» X-хромосомы, видоизменившей часть своих генов. При этом, кажется, достаточно взглянуть на X- и Y-хромосомы, чтобы понять, что эволюция «мужской» хромосомы шла по пути упрощения и потери ею функций.

Хромосомное определение пола

У животных, растений и человека хромосомный механизм является начальным механизмом, определяющим пол. Согласно хромосомной теории, пол организма определяется половыми хромосомами в момент оплодотворения.

Некоторые феминистки, впрочем, утверждают, что для вывода об ущербности мужчин можно на хромосомы и не смотреть, достаточно поглядеть на самих мужчин. Такое утверждение, может быть, слишком сильно, однако, учитывая более низкую продолжительность жизни мужчин почти во всех популяциях, вполне можно оправдать применение к мужскому полу термина «дефект».

Разделение полов на генетическом уровне дало жизни новые возможности для изменчивости, ведь основные приобретения и потери генов происходят как раз на стадии образования половых гамет. Заведомо лишив организм возможности идти по самому легкому пути и оплодотворять свои яйцеклетки самостоятельно, природа многократно повысила количество результирующих вариаций генома. Однако такая изменчивость может аукнуться весьма неожиданным образом.

Прежде из подобных соображений возникали гипотезы о том, что в будущем Y-хромосома может редуцироваться до нуля.

девственное размножение, одна из форм полового размножения организмов, при которой женские половые клетки (яйцеклетки) развиваются без оплодотворения. Партеногенез — половое, но однополое размножение — возник в процессе эволюции…

Такое уже случилось с муравьями и некоторыми другими социальными насекомыми. Грозит ли это человеку?

Антонио Бернардо Карвальо и его коллеги из бразильского Рио-де-Жанейро и американской Итаки решили для начала разобраться с плодовыми мушками. Благо у дрозофил мужской пол определяется так же, как и у людей, хромосомным набором XY.

Несмотря на то что это разделение полов случилось около 450 миллионов лет назад, распределение блоков генов по хромосомам за это время практически не изменилось. Карвальо и еще три мужчины-соавтора публикации в Nature решили уточнить, грозят ли сильному полу плодовых мушек новые масштабные перестройки.

Поскольку в распоряжении ученых к началу исследования уже были 12 полностью секвенированных геномов нескольких видов мушек, то собственная экспериментальная часть оказалась минимальной. Учёные ограничились сравнением последовательности значащих участков Y-хромосомы. Таких, к счастью ученых, оказалось немного: на всю хромосому всего лишь 12 «характерных» генов.

Результаты анализа должны порадовать мужчин:

Y-хромосома больше склонна к росту, нежели к потере.

Сравнив 12 генов у разных видов мушек, ученые убедились, что 3 из этих генов различимы в геноме комаров, ветвь которых отделилась от ветви дрозофил примерно 260 миллионов лет назад. В то же время 7 из 12 генов появились лишь за последние 63 миллиона из 400 миллионов лет эволюции отряда. Вообще, потеря генов Y-хромосомой, по оценкам учёных, идёт примерно в 10 раз медленнее, чем появление на ней генов новых.

Кроме того, ученые полагают, что их данные вообще противоречат текущей догме о происхождении Y-хромосомы за счёт «урезания» X-хромосомы.

По их данным, скорее всего, это случилось за счёт «дублирования» одной из неполовых хромосом (аутосом) — уж слишком велико совпадение в последовательностях генов, чтобы быть случайным.

Так что самцам дрозофил потеря их генетической состоятельности не грозит. А вот справедливо ли то же самое для людей — покажет время. Для млекопитающих вообще больше характерно приобретение генов, нежели их потеря. Так что и у сильного пола H. sapiens есть надежда на будущее.

Почему без Y-хромосомы жить можно, а без Х-хромосомы нет?

Да, можно жить без Y-хромосомы. Около половины земного шара, а точнее 49,6% (такова доля женского населения на этот самый момент согласно счётчику населения Земли https://countrymeters./ru/World), с лёгкостью без неё обходится. А вот без Х-хромосомы, присутствующей в генотипе хотя бы в единственном экземпляре, не обойдётся никто. Она непременно должна быть и у мужчин. Так известно, что хромосомная аномалия Х0 — отсутствие второй половой хромосомы при наличии единственной Х-хромосомы (синдром Шерешевского-Тернера) — хотя и очень неприятна, сопровождается низкорослостью, недоразвитием половой системы, а иногда и патологией внутренних органов, но к смерти пациентки не приводит. А вот зеркальная вроде бы ситуация — аномалия Y0 — даже не имеет своего названия и никем не описана. Почему? Да потому что нет пациентов с такой патологией. Они не рождаются, так как абсолютно нежизнеспособны, что приводит к самопроизвольному их выкидышу на ранних сроках беременности.

В чём причина такой биологической асимметрии? Очевидно, что причину нужно искать в самих половых хромосомах.

Фото сделано с помощью микроскопа. Источник: https://avatars.mds.yandex.net/get-zen_doc/916951/pub_5b5b73ba24286300a954a970_5b5b75e5b23bb300a9248bae/scale_1200

Фото сделано с помощью микроскопа. Источник: https://avatars.mds.yandex.net/get-zen_doc/916951/pub_5b5b73ba24286300a954a970_5b5b75e5b23bb300a9248bae/scale_1200

Что содержит Y-хромосома?

А ничего там интересного, так сами генетики говорят. По последним данным в ней 156 генов, но из них лишь 18 уникальны, а остальные являются множественными копиями 9 генов. То есть, можно сказать, что в Y-хромосоме всего-то 27 функциональных генетических единиц — 27 генов. Очень важен один из них — ген SRY. Я про него уже писала (подробности здесь), а вкратце — этот ген заставляет 7-недельный зародыш прекратить развиваться как девочка и начать-таки развитие по мужскому типу. Остальные гены отвечают за формирование яичек и выработку в них спермы. Согласитесь, сложно назвать эти функции жизненно важными. Хотя они всё же важны безусловно.

Чуть не забыла, недавно в Y-хромосоме обнаружен ген PCDh21Y, отвечающий за синтез белка, влияющего на формирование нервных клеток. Это очень нужная функция, без сперматозоидов прожить можно, а вот без нейронов нет, но в Х-хромосоме есть аналог — ген PCDh21Х, отвечающий за то же самое.

Итак, в активе у «мужской» хромосомы»:

— гены, отвечающие за формирование семенников;

— гены, конролирующие образование спермы;

— ген, влияющий на формирование нервных клеток (имеющий аналог в Х-хромосоме)

В общем, утрата Y-хромосомы явно не смертельна для организма.

Теперь посмотрим на Х-хромосому

Генов в ней более 1400. И белки, синтез которых они контролируют, необходимы человеку любого пола.

Так многим известно, что белки эти отвечают за потоотделение, за адекватное цветоразличение. Один из белков нужен для формирования роговицы глаза, другой отвечает за здоровье кожи. Однако проблемы с этими генами вроде бы не имеют летальных последствий. Гораздо важнее те гены, что контролируют развитие нервной ткани, а значит головного и спинного мозга, ген, отвечающий за свёртываемость крови, ген, под контролем которого работают иммунные клетки нашей крови, а так же множество других, участвующих в образовании клеточных органоидов и в обменных процессах, происходящих в них.

— ген, отвечающий за формирование потовых желёз;

— ген, контролирующий адекватное цветоразличение;

— ген, под контролем которого формирование роговицы глаза;

— ген, участвующий в выработке «арматурных» белков кожи;

— ген, влияющий на формирование нервных клеток (имеет аналог в Y-хромосоме);

— группа генов, контролирующих формирование органов центральной нервной системы;

— ген, контролирующий работу иммунных клеток крови;

— ген, ассоциированный с формированием органоидов лизосом в клетках;

— гены, контролирующие формирование белков-лизирующих ферментов

и ещё более тысячи активных генов

Без Х-хромосомы все эти важнейшие для нас функции были бы неосуществимы. Именно поэтому нет на планете ни одного человека, в генотипе которого она не присутствует хотя бы в единичном экземпляре

«Хочу сына, а рождаются лишь дочки. Кто виноват?»

Что дети наследуют от отца, а что от матери?

Гемофилия — мужская болезнь. Почему?

Что делает мужчину мужчиной? Самый главный мужской ген

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *